Light Nuclei in the Framework of the Symplectic No-Core Shell Model

PDF Version Also Available for Download.

Description

A symplectic no-core shell model (Sp-NCSM) is constructed with the goal of extending the ab-initio NCSM to include strongly deformed higher-oscillator-shell configurations and to reach heavier nuclei that cannot be studied currently because the spaces encountered are too large to handle, even with the best of modern-day computers. This goal is achieved by integrating two powerful concepts: the ab-initio NCSM with that of the Sp(3,R) {contains} SU(3) group-theoretical approach. The NCSM uses modern realistic nuclear interactions in model spaces that consists of many-body configurations up to a given number of {h_bar}{Upsilon} excitations together with modern high-performance parallel computing techniques. The ... continued below

Physical Description

9 pages

Creation Information

Draayer, Jerry P.; Dytrych, Tomas; Sviratcheva, Kristina D.; Bahri, Chairul & Vary, James P. April 2, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A symplectic no-core shell model (Sp-NCSM) is constructed with the goal of extending the ab-initio NCSM to include strongly deformed higher-oscillator-shell configurations and to reach heavier nuclei that cannot be studied currently because the spaces encountered are too large to handle, even with the best of modern-day computers. This goal is achieved by integrating two powerful concepts: the ab-initio NCSM with that of the Sp(3,R) {contains} SU(3) group-theoretical approach. The NCSM uses modern realistic nuclear interactions in model spaces that consists of many-body configurations up to a given number of {h_bar}{Upsilon} excitations together with modern high-performance parallel computing techniques. The symplectic theory extends this picture by recognizing that when deformed configurations dominate, which they often do, the model space can be better selected so less relevant low-lying {h_bar}{Upsilon} configurations yield to more relevant high-lying {h_bar}{Upsilon} configurations, ones that respect a near symplectic symmetry found in the Hamiltonian. Results from an application of the Sp-NCSM to light nuclei are compared with those for the NCSM and with experiment.

Physical Description

9 pages

Source

  • To appear in the proceedings of 25th International Workshop on Nuclear Theory, Rila, Bulgaria, 26 Jun - 1 Jul 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-12432
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 901844
  • Archival Resource Key: ark:/67531/metadc881496

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 2, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • July 26, 2017, 12:09 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Draayer, Jerry P.; Dytrych, Tomas; Sviratcheva, Kristina D.; Bahri, Chairul & Vary, James P. Light Nuclei in the Framework of the Symplectic No-Core Shell Model, article, April 2, 2007; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc881496/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.