Utilization of Actively-induced, Prompt Radiation Emission for Nonproliferation Applications

PDF Version Also Available for Download.

Description

The pulsed Photonuclear Assessment (PPA) technique, which has demonstrated the ability to detect shielded nuclear material, is based on utilizing delayed neutrons and photons between accelerator pulses. While most active interrogation systems have focused on delayed neutron and gamma-ray signatures, the current requirements of various agencies necessitate bringing faster detection and acquisition capabilities to field inspection applications. This push for decreased interrogation times, increased sensitivity and mitigation of false positives requires that detection systems take advantage of all available information. Collaborative research between Idaho National Lab (INL), Idaho State University’s Idaho Accelerator Center (IAC), Los Alamos National Laboratory (LANL), and ... continued below

Creation Information

Blackburn, F. W.; Jones, J. L.; Moss, C. E.; Mihalzco, J. T.; Hunt, A. W. & Harmon, F. August 1, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The pulsed Photonuclear Assessment (PPA) technique, which has demonstrated the ability to detect shielded nuclear material, is based on utilizing delayed neutrons and photons between accelerator pulses. While most active interrogation systems have focused on delayed neutron and gamma-ray signatures, the current requirements of various agencies necessitate bringing faster detection and acquisition capabilities to field inspection applications. This push for decreased interrogation times, increased sensitivity and mitigation of false positives requires that detection systems take advantage of all available information. Collaborative research between Idaho National Lab (INL), Idaho State University’s Idaho Accelerator Center (IAC), Los Alamos National Laboratory (LANL), and Oak Ridge National Laboratory (ORNL), has focused on exploiting actively-induced, prompt radiation signatures from nuclear material within a pulsed photonuclear environment. To date, these prompt emissions have not been effectively exploited due to difficulties in detection and signal processing inherent in the prompt regime as well as an overall poor understanding of the magnitude and yields of these emissions. Exploitation of prompt radiation (defined as during an accelerator pulse/(photo) fission event and/or immediately after (< l ms)) has the potential to dramatically reduce interrogation times since the yields are more than two orders of magnitude greater than delayed emissions. Recent preliminary experiments conducted at the IAC suggest that it is indeed possible to extract prompt neutron information within a pulsed photon environment. Successful exploitation of prompt emissions is critical for the development of an improved robust, high-throughput, low target dose inspection system for detection of shielded nuclear materials.

Source

  • Conference on Accelerator Applications in Research and Industry,Fort Worth, Texas,08/21/2006,08/25/2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-06-11167
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 911808
  • Archival Resource Key: ark:/67531/metadc881449

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 6:23 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Blackburn, F. W.; Jones, J. L.; Moss, C. E.; Mihalzco, J. T.; Hunt, A. W. & Harmon, F. Utilization of Actively-induced, Prompt Radiation Emission for Nonproliferation Applications, article, August 1, 2006; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc881449/: accessed June 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.