Compositional tuning of ferromagnetism in Ga1-xMnxP

PDF Version Also Available for Download.

Description

We report the magnetic and transport properties of Ga{sub 1-x}Mn{sub x}P synthesized via ion implantation followed by pulsed laser melting over a range of x, namely 0.018 to 0.042. Like Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P displays a monotonic increase of the ferromagnetic Curie temperature with x associated with the hole-mediated ferromagnetic phase while thermal annealing above 300 C leads to a quenching of ferromagnetism that is accompanied by a reduction of the substitutional fraction of Mn. However, contrary to observations in Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P is non-metallic over the entire composition range. At the lower temperatures over ... continued below

Creation Information

Farshchi, R.; Scarpulla, M.A.; Stone, P.R.; Yu, K.M.; Sharp,I.D.; Beeman, J.W. et al. May 23, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We report the magnetic and transport properties of Ga{sub 1-x}Mn{sub x}P synthesized via ion implantation followed by pulsed laser melting over a range of x, namely 0.018 to 0.042. Like Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P displays a monotonic increase of the ferromagnetic Curie temperature with x associated with the hole-mediated ferromagnetic phase while thermal annealing above 300 C leads to a quenching of ferromagnetism that is accompanied by a reduction of the substitutional fraction of Mn. However, contrary to observations in Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P is non-metallic over the entire composition range. At the lower temperatures over which the films are ferromagnetic, hole transport occurs via hopping conduction in a Mn-derived band; at higher temperatures it arises from holes in the valence band which are thermally excited across an energy gap that shrinks with x.

Source

  • Journal Name: Solid State Communications; Journal Volume: 140; Related Information: Journal Publication Date: 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--61577
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1016/j.ssc.2006.09.010 | External Link
  • Office of Scientific & Technical Information Report Number: 918811
  • Archival Resource Key: ark:/67531/metadc881411

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 23, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Oct. 31, 2016, 3:49 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Farshchi, R.; Scarpulla, M.A.; Stone, P.R.; Yu, K.M.; Sharp,I.D.; Beeman, J.W. et al. Compositional tuning of ferromagnetism in Ga1-xMnxP, article, May 23, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc881411/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.