Diagnostic Evaluation of Detrimental Phenomena in High-PowerLithium-Ion Batteries

PDF Version Also Available for Download.

Description

A pouch-type lithium-ion cell, with graphite anode and LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathode, was cycled at C/2 over 100% depth of discharge (DOD) at ambient temperature. The LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} composite cathode was primarily responsible for the significant impedance rise and capacity fade observed in that cell. The processes that led to this impedance rise were assessed by investigating the cathode surface electronic conductance, surface structure, composition, and state of charge at the microscopic level with the use of local probe techniques. Raman microscopy mapping of the cathode surface provided evidence that the state of charge of ... continued below

Creation Information

Kostecki, Robert; Lei, Jinglei; McLarnon, Frank; Shim, Joongpyo & Striebel, Kathryn November 1, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A pouch-type lithium-ion cell, with graphite anode and LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathode, was cycled at C/2 over 100% depth of discharge (DOD) at ambient temperature. The LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} composite cathode was primarily responsible for the significant impedance rise and capacity fade observed in that cell. The processes that led to this impedance rise were assessed by investigating the cathode surface electronic conductance, surface structure, composition, and state of charge at the microscopic level with the use of local probe techniques. Raman microscopy mapping of the cathode surface provided evidence that the state of charge of individual LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} particles was non-uniform despite the deep discharge at the end of cell testing. Current-sensing atomic force microscopy imaging revealed that the cathode surface electronic conductance diminished significantly in the tested cells. Loss of contact of active material particles with the carbon matrix and thin film formation via electrolyte decomposition not only led to LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} particle isolation and contributed to cathode interfacial charge-transfer impedance but also accounted for the observed cell power and capacity loss.

Source

  • Journal Name: The Electrochemical Society, Inc.; Journal Volume: 153; Journal Issue: 4; Related Information: Journal Publication Date: 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--59195
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 903039
  • Archival Resource Key: ark:/67531/metadc881389

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 2005

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 30, 2016, 1:40 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kostecki, Robert; Lei, Jinglei; McLarnon, Frank; Shim, Joongpyo & Striebel, Kathryn. Diagnostic Evaluation of Detrimental Phenomena in High-PowerLithium-Ion Batteries, article, November 1, 2005; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc881389/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.