Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

PDF Version Also Available for Download.

Description

The ''Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations'' project is investigating the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This project will involve the use of 4D seismic (time lapse seismic) to try to observe the movement of the injected CO{sub 2} through the reservoir. The differences between certain seismic attributes, such as amplitude, will be used to detect and map the movement of CO{sub 2} within the reservoir. This technique has recently been shown to be effective in CO{sub ... continued below

Creation Information

Toelle, Brian E. February 28, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The ''Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations'' project is investigating the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This project will involve the use of 4D seismic (time lapse seismic) to try to observe the movement of the injected CO{sub 2} through the reservoir. The differences between certain seismic attributes, such as amplitude, will be used to detect and map the movement of CO{sub 2} within the reservoir. This technique has recently been shown to be effective in CO{sub 2} monitoring in EOR projects such as Weyborne. The project is being conducted in the Charlton 30/31 field in northern Michigan Basin which is a Silurian pinnacle reef that has completed its primary production. This field is now undergoing enhanced oil recovery using CO{sub 2}. The CO{sub 2} flood was initiated the end of 2005 when the injection of small amounts of CO{sub 2} begin in the A1 Carbonate. This injection was conducted for 2 months before being temporarily halted in order for pressure measurements to be conducted. The determination of the reservoir's porosity distribution is proving to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model had to be developed. From this model, an accurate determination of porosity within the carbonate reservoir must be obtained. For this certain seismic attributes have been investigated. The study reservoirs in the Charlton 30/31 field range from 50 to 400 acres in size. The relatively small area to image makes 3-D seismic data acquisition reasonably cost effective. Permeability and porosity vary considerably throughout the reef, thus it is essential to perform significant reservoir characterization and modeling prior to implementing a CO{sub 2} flood to maximize recovery efficiency. Should this project prove successful, the same technique could be applied across a large spectrum of the industry. In Michigan alone, the Niagaran reef play is comprised of over 700 Niagaran reefs with reservoirs already depleted by primary production. These reservoirs range in thickness from 200 to 400 ft and are at depths of 2000 to 5000 ft. Approximately 113 of these Niagaran oil fields have produced over 1 million bbls each and the total cumulative production is in excess of 300 million bbls and 1.4 Tcf. There could potentially be over 1 billion bbls of oil remaining in reefs in Michigan much of which could be mobilized utilizing techniques similar to those employed in this study.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FC26-04NT15425
  • DOI: 10.2172/908313 | External Link
  • Office of Scientific & Technical Information Report Number: 908313
  • Archival Resource Key: ark:/67531/metadc881331

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 28, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 2, 2016, 8:18 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Toelle, Brian E. Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations, report, February 28, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc881331/: accessed April 27, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.