Ultrabroadband 50-130 THz pulses generated via phase-matcheddifference frequency mixing in LiIO3

PDF Version Also Available for Download.

Description

We report the generation of ultrabroadband pulses spanningthe 50-130 THz frequency range via phase-matched difference frequencymixing within the broad spectrum of sub-10 fs pulses in LiIO_3. Modelcalculations reproduce the octave-spanning spectra and predict few-cycleTHz pulse durations less than 20~;fs. The applicability of this scheme isdemonstrated with 9-fs pulses from a Ti:sapphire oscillator and with 7-fsamplified pulses from a hollow fiber compressor as pumpsources.

Creation Information

Zentgraf, Thomas; Huber, Rupert; Nielsen, Nils C.; Chemla, DanielS. & Kaindl, Robert A. October 10, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We report the generation of ultrabroadband pulses spanningthe 50-130 THz frequency range via phase-matched difference frequencymixing within the broad spectrum of sub-10 fs pulses in LiIO_3. Modelcalculations reproduce the octave-spanning spectra and predict few-cycleTHz pulse durations less than 20~;fs. The applicability of this scheme isdemonstrated with 9-fs pulses from a Ti:sapphire oscillator and with 7-fsamplified pulses from a hollow fiber compressor as pumpsources.

Source

  • Journal Name: Optics Letters; Journal Volume: 15; Journal Issue: 9; Related Information: Journal Publication Date: 04/26/2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--61744
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 918483
  • Archival Resource Key: ark:/67531/metadc881328

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 10, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 30, 2016, 12:55 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zentgraf, Thomas; Huber, Rupert; Nielsen, Nils C.; Chemla, DanielS. & Kaindl, Robert A. Ultrabroadband 50-130 THz pulses generated via phase-matcheddifference frequency mixing in LiIO3, article, October 10, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc881328/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.