Study of methods for automated crack inspection of electrically poled piezoelectric ceramics.

PDF Version Also Available for Download.

Description

The goal of this project was to identify a viable, non-destructive methodology for the detection of cracks in electrically poled piezoelectric ceramics used in neutron generator power supply units. The following methods were investigated: Impedance Spectroscopy, Scanning Acoustic Microscopy, Lock-in Thermography, Photo-acoustic Microscopy, and Scanned Vicinal Light. In addition to the exploration of these techniques for crack detection, special consideration was given to the feasibility of integrating these approaches to the Automatic Visual Inspection System (AVIS) that was developed for mapping defects such as chips, pits and voids in piezoelectric ceramic components. Scanned Vicinal Light was shown to be the ... continued below

Physical Description

26 p.

Creation Information

Yang, Pin; Hwang, Stephen C.; Jokiel, Bernhard, Jr. & Burns, George Robert June 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The goal of this project was to identify a viable, non-destructive methodology for the detection of cracks in electrically poled piezoelectric ceramics used in neutron generator power supply units. The following methods were investigated: Impedance Spectroscopy, Scanning Acoustic Microscopy, Lock-in Thermography, Photo-acoustic Microscopy, and Scanned Vicinal Light. In addition to the exploration of these techniques for crack detection, special consideration was given to the feasibility of integrating these approaches to the Automatic Visual Inspection System (AVIS) that was developed for mapping defects such as chips, pits and voids in piezoelectric ceramic components. Scanned Vicinal Light was shown to be the most effective method of automatically detecting and quantifying cracks in ceramic components. This method is also very effective for crack detection in other translucent ceramics.

Physical Description

26 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2004-1934
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/919173 | External Link
  • Office of Scientific & Technical Information Report Number: 919173
  • Archival Resource Key: ark:/67531/metadc881306

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2004

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 7, 2016, 10:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Yang, Pin; Hwang, Stephen C.; Jokiel, Bernhard, Jr. & Burns, George Robert. Study of methods for automated crack inspection of electrically poled piezoelectric ceramics., report, June 1, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc881306/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.