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Abstract 

 
A primary goal of numerical radiation transport is obtaining a self-consistent solution for both the 

radiation field and plasma properties.  Obtaining such a solution requires consideration of the coupling 
between the radiation and the plasma.  The different characteristics of this coupling for continuum and line 
radiation have resulted in two separate sub-disciplines of radiation transport with distinct emphases and 
computational techniques.  LTE radiation transfer focuses on energy transport and exchange through 
broadband radiation, primarily affecting temperature and ionization balance.  Non-LTE line transfer 
focuses on narrowband radiation and the response of individual level populations, primarily affecting 
spectral properties.  Many high energy density applications, particularly those with high-Z materials, 
incorporate characteristics of both these regimes.  Applications with large radiation fields including strong 
line components require a non-LTE broadband treatment of energy transport and exchange. 

 
We discuss these issues and present a radiation transport treatment which combines features of both 

types of approaches by explicitly incorporating the dependence of material properties on both temperature 
and radiation fields.  The additional terms generated by the radiation dependence do not change the 
character of the system of equations and can easily be added to a numerical transport implementation.  A 
numerical example from a Z-pinch application demonstrates that this method improves both the stability 
and convergence of the calculations.  The information needed to characterize the material response to 
radiation is closely related to that used by the Linear Response Matrix (LRM) approach to near-LTE 
simulation, and we investigate the use of the LRM for these calculations. 

 
Keywords: Non-LTE; Radiation Transport 
* E-mail address:  hascott@llnl.gov 

 
1. Introduction 
 

Radiation transport methods have been applied to a wide variety of physical systems over the last 
several decades.  Solution techniques are now sufficiently well developed to allow routine usage of 
multidimensional simulations in the fields of astrophysics and high energy density physics.  In particular, 
applications in two regimes have been well studied in these fields.  Energy transport by radiation in high 
temperature plasmas in local thermodynamic equilibrium (LTE) is an important, if not dominant, 
phenomenon in applications such as stellar interiors and inertial confinement fusion (ICF), in which the 
radiation interacts with matter and transports energy over a wide range of frequencies.  The importance of 
this broadband radiation transport has led to a great deal of work over the last few decades, resulting in the 
development of very effective numerical schemes [1]. 

 
The situation is similar for transport of line radiation in non-LTE applications such as stellar 

atmospheres and plasma spectroscopy.  In the regime of interest for these applications, a very narrow 
frequency range of radiation interacts with the matter, altering the populations of atomic energy levels, 
ultimately affecting the spectrum emitted by the matter.  Effective numerical algorithms now allow the 
solution of extremely large and complex systems [2,3]. 

 
Despite the successes achieved in these two fields, much work remains in the development of efficient, 

robust and general solution methods.  Non-LTE materials in high radiation fields, common in high energy 



density physics applications, respond strongly to radiation in both their energetic and spectral 
characteristics.  The motivation behind this paper is the extension of a class of commonly used numerical 
radiation transport methods to handle such applications. 

 
In the following section, we consider the non-LTE energetics of radiation interacting with matter, 

determining the relationship between energy density and temperature.  The generalization of the LTE 
relationship separates the dependence of the energy density on the temperature from the direct effect of 
radiative interactions.  A numerical example then identifies the regime in which the radiation spectrum can 
significantly alter the material response. 

 
The equations and solution methods considered in this paper are presented in Sec. 3.  The set of 

equations used for broadband radiation transport and material energetics is given in Sec. 3a, along with a 
straightforward solution scheme.  Similarly, Sec. 3b presents the equations used for line radiation transport, 
along with a very common solution technique.  For each of these cases, we briefly discuss those aspects of 
the physical situation and numerical techniques that contribute to the effectiveness of the solution methods.  
The emphasis here is on the coupling of the radiation to the material, and on the self-consistent solution for 
the radiation field and material properties.  The discussion leads naturally to an extension of the broadband 
algorithm which explicitly incorporates the dependence of material properties on radiation.  The extended 
algorithm is presented and discussed in Sec. 3c, along with a low-density approximation used to calculate 
the additional material response terms. 

 
Both the original solution scheme for the broadband equations and the extended algorithm use 

linearization to incorporate material response information.  A majority of the discussion and conclusions 
contained in this paper should apply to any solution scheme that shares this characteristic.  Solution 
techniques that do not explicitly incorporate response information, e.g. those depending on a robust non-
linear solver, will not benefit directly, but the insights afforded by this work should still be valuable. 

 
Since our interest here is in handling the coupling between radiation and matter, we do not explicitly 

consider the numerical solution of the radiative transport equation itself.  We will actually use a diffusion 
operator rather than a true transport operator for numerical work, with the assumption that this does not 
alter the character of the radiation-matter coupling.  Sec. 4 presents results from a test application based 
upon a dynamic hohlraum, for both the standard broadband algorithm and for the extended algorithm. 

 
The additional terms required by the extended algorithm are very expensive to compute, and add to the 

cost of the already-expensive non-LTE calculations.  In Sec. 5, we address the possibility of using tabular 
information for the material properties and responses, which would greatly decrease the cost of the non-
LTE simulations.  The linear response matrix (LRM) approach to near-LTE simulations [4] tabulates 
response information similar to that required by the extended algorithm, and we consider a generalization 
of this approach that would be suitable for our purposes. 

 
All numerical results presented in this paper use material properties calculated self-consistently with 

the radiation field by a collisional-radiative model [5].  The electronic structure and transition rates are 
calculated using a modified screened-hydrogenic atomic model very similar to that described in [6]. 

 
 

2. Non-LTE Energetics 
 

For matter that is not in LTE, describing the response to radiation is more complicated than for the 
corresponding LTE case.  We consider the relationship between the material energy density Em, the 
material properties and the radiation field: 

 int
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Here, ne (ni) is the number density of the free electrons (ions), which are assumed to have a thermal 
distribution corresponding to the material temperature T.  Eint is the material internal energy, which depends 
not only on the temperature and density, but also on the radiation field, denoted by Jν, and on the time t.  



For the remainder of this paper, we ignore the density dependence as unimportant to the discussion and 
focus on the temperature and radiation.  We also adopt a single-temperature description of the material for 
simplicity of exposition. 

 
For material in LTE, the internal energy depends only on temperature, and the rate of change in 

material energy density and temperature are related through the specific heat (at constant density) cV: 
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Implicit in this formulation is the assumption that either radiative interactions are completely unimportant 
or that the extant radiation also has a thermal distribution, i.e. Jν = Bν, where Bν is the Planck distribution.  
In the more general non-LTE formulation, the rate of change of material energy density is comprised of 
three different types of terms: 
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The first term on the RHS of Eq. (3) describes the response of the material energy density to a change in 
temperature, but with fixed radiation densities, while the second term describes the material response to a 
change in radiation at fixed temperature.  The coefficient of the first term plays the part of the non-LTE 
specific heat, which is related to the LTE specific heat by 
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The last term on the RHS of Eq. (3) arises from evolution of the material at fixed temperature and radiation, 
and acts as a source or sink of energy.  This term can be quite important in following the thermal evolution 
of matter at very low densities and temperatures, but for the remainder of this discussion we assume this 
term is negligible and do not consider it further. 

 
Non-LTE effects will become significant at densities low enough for important radiative transition 

rates to become comparable to the corresponding collisional rates.  A numerical example illustrates the 
relative importance of the temperature and radiative responses to the specific heat.  For this example, we 
calculate the specific heat of a Lu plasma at three different densities.  Figures 1a - 1c show the specific heat 
as a function of temperature for ion number densities of 1018, 1020 and 1022 cm-3, respectively.  In each 
figure, the thick solid line gives the LTE specific heat, cV

LTE, while the thin solid line gives the non-LTE 
specific heat cV

NLTE evaluated assuming a Planckian radiation field at the given temperature, and the thin 
dashed line gives cV

NLTE evaluated assuming no radiation field.  The dotted line gives the specific heat 
obtained by evaluating Eq. (4) using approximate values for the derivatives with respect to Jν.  This low-
density approximation (the “diagonal” approximation) will be explained in Sec. 3.3. 

 
At the highest of the three densities, LTE is a good approximation and the specific heat varies little 

with the radiation.  As the density decreases, the difference between cV
LTE and cV

NLTE increases, and it 
becomes apparent that the material radiative response dominates the temperature response.  Regardless of 
the other considerations in this paper, use of the LTE specific heat at low densities in the presence of non-
Planckian radiation fields will not describe the material energetics correctly. 

 
 

3. Radiation Transport 
 

In the first two parts of this section, we consider salient features of numerical radiation transport 
algorithms as employed in common applications for both broadband (continuum) and line radiation.  For 
both these cases, we list the basic set of equations to be solved, i.e. the radiative transfer equation together 
with the appropriate material equation(s), and briefly discuss certain aspects of their solution.  The 
emphasis here is on those aspects critical to constructing a self-consistent solution method with reasonable 
convergence properties.  Although these subsections repeat information broadly available in the literature, 



they provide the components for the last subsection, which proposes an extension of the broadband 
algorithm that incorporates features from both cases. 

 
 

3.1 Broadband radiation transport 
 
The system of equations describing energy transport by broadband radiation is comprised of the 

radiation transport equation 
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and the material energy equation 
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where Iν is the specific intensity at frequency ν, αν and ην are the absorption coefficient and emissivity, Q 
represents other energy sources, Jν is the angle-averaged intensity 
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and Sν ν νη α=  is the source function.  In LTE, the source function is the Planck function, Bν, and is a 
function of temperature only. 

 
A common method of solving this non-linear set of equations is to discretize in time and linearize 

about the current temperature T0.  Applying these operations to Eq. (6) gives 
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acts as a specific heat for the total system of matter and radiation.  Eq. (8) can be analytically combined 
with the linearized and discretized version of Eq. (5), resulting in 
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We have assumed a fully-implicit time discretization, since applications usually require at least a 

partially-implicit treatment for stability.  The superscript “0” denotes values at the beginning of the time 
interval.  This treatment can be, and in LTE often is, generalized to an iterative procedure to converge the 
nonlinear dependence of  Sν  on the temperature.   

 
The integral terms in Eq. (10) couple together intensities for all angles and all frequencies.  Our 

primary interest here is the coupling of the different radiation frequencies to the material, so we simplify 
the equations further by eliminating the angular dimensions.  Replacing the transport operator with a 
diffusion operator through the substitutions 

 ,v vI J I D Jν ν ν← Ω • ∇ ← −∇ • ∇   (11) 

in Eq. (10), where c 3= Dν να is the diffusion coefficient, simplifies both the analysis while leaving the 
essential aspects of coupling between radiation and material unchanged. 

 
The resulting multigroup radiation diffusion equations converge very slowly under a straightforward 

iterative procedure, but can be made to converge quickly upon application of multifrequency-grey 
acceleration [7].  As discussed in this paper, a stability analysis reveals that without acceleration, short 
wavelength modes can be marginally convergent.  The grey acceleration operator provides much faster 
convergence, eliminating the error in these modes by transporting a correction term with a spectral shape 



determined by the absorption coefficient spectrum.  The correction accounts for redistribution of radiation 
into optically thin high frequencies, where it can propagate freely. 

 
The efficiency of grey acceleration does depend upon the spectrum of the absorption coefficient.  If the 

absorption coefficient falls off too quickly with frequency, the acceleration degrades or fails.  However, 
physically realistic continuum opacities tend to fall of as ~ν-3 at high frequencies, slowly enough for grey 
acceleration to be effective. 

 
 

3.2 Line radiation transport 
 
In this case, the radiation transport equation (5) is combined with the atomic kinetics rate equation 

 
d
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y
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where the vector y represents the population densities of the atomic levels and A is the rate matrix.  The 
total rate Aij connecting two atomic levels i and j includes collisional and radiative transitions, both discrete 
(bound-bound) and continuous (free-bound).  The populations respond to the radiation through the effects 
on the transition rates. 

The prototypical example of this type of system is the steady-state two-level atom [8], consisting of 
two levels connected by a single discrete radiative transition and a collisional transition.  The source 
function for such a system, obtained under the approximation that the width of the spectral line is very 
narrow (and assuming complete redistribution), has the form: 
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where ijν  is the transition frequency and gi is the statistical weight of level i.  The frequency-independent 
source function Sij depends on the radiation field only through the angle-integrated, frequency-averaged 
quantity 
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which enters into the transition rate, where φ is the line profile function.  For this simple system, Sij has the 
form 

 ( ) (1 )ij ijS J J Bε ε= − +   (15) 

where Bij is the non-dimensional Planck function at the transition energy.  ε is determined by the ratio of 
the collisional and spontaneous radiative transition rates and can be very small for a strong radiative 
transition.  The more general source function accounting for all overlapping radiative transitions (including 
free-free transitions) is somewhat more complicated, but in the low-density regime it remains true that for a 
frequency corresponding to a strong transition i→j, the dominant radiative dependence will be on the 
corresponding J . 

 
As with broadband radiation transport, there are a variety of techniques designed to produce self-

consistent converged solutions with reasonable convergence rates.  Over the last couple decades, the most 
versatile and economical methods have been based on the concept of approximate operators [9].  Rather 
than invert the full transport operator, these methods invert an approximation to the full operator, using the 
inverse in an iterative procedure to obtain the full solution.  The closer the approximate operator is to the 
full operator, the faster the procedure converges.  There are many ways to choose an approximate operator, 
and several dimensions to work in, but the near-universal choice for multidimensional problems is to use 
the (spatial) diagonal of the full operator [10].  This is trivial to invert, being a scalar, and relatively simple 
to form.  These tradeoffs compensate for a somewhat slower convergence rate. 

 
The diagonal approximate operator contains contributions from all frequencies contributing to the line 

radiation, but in contrast to the broadband acceleration operator, it contains only local information about the 
material response.  This does not contradict the broadband analysis, as the absorption spectrum for a 



spectral line violates the conditions for grey acceleration to be effective.  The troublesome high frequency 
modes do not exist in line radiation and it suffices to handle the frequency-frequency coupling locally. 

 
 

3.3 Combined broadband + line radiation 
 
The solution techniques described in the last two subsections work quite well in their respective 

regimes, but this success does not carry over between regimes.  For instance, an approximate operator 
technique applied to broadband radiation with a standard absorption spectrum converges very slowly.  If a 
high-frequency cutoff is added to the absorption spectrum, mimicking a line spectrum, the approximate 
operator converges quickly but grey acceleration becomes ineffective. 

 
The considerations of the previous two subsections suggest that a simple combined approach might be 

effective in situations where both broadband radiation and line radiation are important.  We retain the 
structure of the broadband treatment, including a grey acceleration step to treat high-frequency modes, but 
add the local dependence of the material properties on the radiation spectrum by linearizing the source 
function in the radiation field as well in the temperature: 
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This linearization of the source term is a straightforward generalization along the lines of the discussion of 
energetics in Sec. 2.  In the regime where the radiation spectrum significantly influences the energetics, it is 
reasonable to expect a similarly significant dependence in the source function.  The considerations of the 
previous two subsections provide cause for optimism that this simple extension will produce a stable 
convergent solution to radiation-dominated non-LTE problems.  Sec. 4 presents a numerical application of 
this method demonstrating support for this viewpoint. 

 
The new response terms 'v vS J∂ ∂  involve all frequencies.  These terms do not introduce any new 

complications into the solution method, but computing all the additional derivatives is extremely expensive.  
In the low-density regime where we expect strong line radiation to dominate the radiative response, we can 
make the additional approximation that each bound-bound radiative transition Rij responds to radiation of a 
single frequency.  Implicit in this approximation is the assumption that each strong line is contained within 
a single frequency bin, and we make no attempt to resolve any of the lines.  Under these conditions, we can 
easily calculate the required derivatives from the atomic kinetics equations.  We refer to this as the 
“diagonal” approximation, as it uses only the diagonal terms from the complete response matrix.  Figs. (1a) 
– (1c) demonstrate that this approximation indeed does very well at low densities, but poorly near LTE. 

 
Extending the solution method described in Sec. 3a to include the new response terms is 

straightforward.  Linearizing the equations about the current temperature and radiation spectrum, using the 
diagonal approximation, produces 
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where Tc  is defined as in Eq. (9) using the non-LTE specific heat. Eqs. (17) and (18) retain the same 
multigroup structure as before, and may be solved in the same manner. 

 
A numerical implementation of the broadband equations can be extended in a very simple manner.  

Most of the changes in the implementation are captured by the substitutions: 
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In the absence of the diagonal approximation, these changes include the obvious sums over frequencies.  
Besides these substitutions, only a couple additional terms remain to be handled separately. 



 
One significant change in solution procedure from standard LTE practice is necessitated by the non-

LTE nature of the material properties.  The source function is no longer a Planckian and need not have a 
simple form, so any iterative procedure that attempts to produce a self-consistent solution will necessarily 
entail iterating the atomic kinetics equations as well.  This would be prohibitively expensive in most cases, 
although Sec. 5 discusses one approach towards a tabular solution. 

 
A related issue has to do with the grey acceleration step, which uses Planckian weights and is intended 

for use within the iterative procedure.  However, an alternative procedure is to directly solve Eq. (10) for all 
frequencies simultaneously.  A reduction procedure makes this quite economical in one dimension.  Test 
cases, including the examples presented in the following section, have shown that using a single grey 
acceleration step produces nearly the same results as the direct solution procedure.  Grey acceleration 
remains remarkably effective for non-LTE problems as well as for LTE problems. 

 
 

4. Test Case: Radiation-driven Cylinder 
 

As a test of the extended transport algorithm, we consider a case that is based upon a Z-pinch dynamic 
hohlraum experiment [11].  The specifications are very similar to those used in [12] to model tungsten 
liners.  The chosen configuration, illustrated in Fig. 2, consists of a hollow cylinder composed of uniform 
density Lu.  The cylinder is illuminated from the interior by a blackbody radiation source of temperature 
250 eV, with vacuum on the exterior.  The inner surface of the cylinder has a radius of r0 = 0.16 cm and the 
outer surface has a radius of r3 = 0.36 cm.  The radii r1 and r2, equally spaced between r0 and r3, are 
identified for purposes of displaying results.  The goal is to calculate the self-consistent temperature and 
radiation distribution throughout the cylinder. 

 
Although this is a static geometry and we seek the steady-state solution, we perform time-dependent 

calculations with each time step corresponding to a single atomic kinetics evaluation followed by a single 
application of either the broadband or extended transport algorithm, using one grey acceleration correction. 

 
We consider three different densities for the cylinder.  At the lowest of these, with number density Ni = 

1018 cm-3, the cylinder is optically thick only at frequencies corresponding to strong line transitions.  The 
highest density, Ni = 1020 cm-3, corresponding to the middle density used for the specific heat evaluations in 
Sec. 2, is not yet in LTE, but has moderate to high optical depths over most of the frequency range.  Fig. 3 
shows the optical depth along a radial line between the inner and outer radii for these two cases, evaluated 
from fully converged NLTE solutions, as well as the optical depth for the lower density case, evaluated 
from an LTE solution. 

 
Figs. 4a and 4b show the radiation intensity, Jν, at the inner and outer radii for the low-density and the 

high-density cases, respectively.  The Planck function appropriate to the material temperature is included 
for reference.  The low-density case is very far from LTE, and the intensity spectra largely reflect the 
driving radiation, with some modifications due to strong line transitions.  The high-density case is 
reasonably close to LTE, although a number of non-Planckian features are visible in the intensity spectra.  
The source function, Sν, provides a better indication of the non-LTE nature of these cases, as shown in Figs. 
5a and 5b.  Again, the appropriate Planck functions are included for reference. 

 
A more interesting measure of the non-LTE nature of these cases is given in Figs. 6a and 6b.  These 

figures display the diagonal of the source response function, S Jν ν∂ ∂ , as a function of frequency, at both 
the inner and outer radii for the low-density and the high-density cases.  This quantity is strictly zero in 
LTE, as the source function is independent of the radiation field.  For the two-level atom, this quantity 
reaches a maximum value of one when collisional rates are negligible.  A large value in this context also 
indicates highly radiation-dominated transitions.  A value too close to one can cause problems in the 
numerical implementation, as evidenced in Eq. (19), so we restrict the maximum value of this quantity to 
0.95.  This limit is also reflected in the figures.  It is evident that various narrow spectral ranges of the 
source function are very strongly dependent on the radiation field, indicating that these spectral ranges are 



dominated by strong line transitions.  We also define an average value of this quantity by integrating over 
the spectrum, weighted by the radiation intensity: 
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For the low-density case, the average value is about 0.47 over the entire spatial domain, indicating a very 
strong dependence on the radiation field.  For the high-density case, the average value varies from 0.27 – 
0.37.  Since the diagonal approximation is not accurate for this case, these values are not reliable, but may 
still indicate a degree of sensitivity to the radiation field. 

 
The converged material and radiation temperature profiles for the low-density case, for both non-LTE 

and LTE calculations, are given in Fig. 7a.  The radiation temperature is insensitive to the material 
treatment and changes very slowly with radius.  The material temperature, however, differs considerably 
for these two treatments. 

 
The difference in behavior of the broadband and extended algorithms, as shown in Fig. 7b, is quite 

dramatic.  The solutions were obtained through time-dependent evolution, starting from a uniform material 
temperature of 200 eV.  The timesteps were initially very small, gradually increasing while attempting to 
keep temperature changes small within each timestep.  Fig. 7b displays temperature histories for four 
equally spaced points from the inner radius to the outer radius.  The histories generated by the extended 
algorithm are smooth and well behaved.  The broadband algorithm, however, evolves in the wrong 
direction early in time and quickly goes unstable.  Stabilizing the evolution requires timesteps small enough 
for an explicit algorithm. 

 
Figs. 8a and 8b give the corresponding results for the mid-density case, with Ni = 1019 cm-3.  The 

spatial temperature profiles still differ significantly between the non-LTE and LTE solutions, particularly 
near the outer boundary of the cylinder.  The extended algorithm again performs well, smoothly evolving to 
the steady-state solution.  The broadband algorithm experiences some difficulty, experiencing a mild 
instability at low temperatures, but stabilizes and smoothly evolves to late times.  However, slow evolution 
continues at very late times and the solution does not reach steady state. 

 
The results for the high-density case are given in Figs. 9a and 9b.  Here, the non-LTE and LTE spatial 

temperature profiles are indistinguishable, although the material and radiation temperatures still differ 
noticeably near the boundaries.  For this case, the broadband algorithm performs well, evolving smoothly 
to the steady-state solution.  The extended algorithm does not perform quite as well at early times and goes 
unstable at late times.  This behavior is almost certainly due to the failure of the diagonal approximation at 
this high density. 

 
The extended algorithm does expand the range of conditions for which this type of radiation transport 

algorithm can be successfully applied.  It improves both the stability and the convergence of the solution, at 
least when the diagonal approximation to the response function is appropriate.  Unfortunately, it is not 
necessarily clear when this approximation is valid.  Similarly, in mildly non-LTE situations it may not be 
apparent when the broadband algorithm becomes inaccurate.  In addition, calculating the diagonal response 
function increases the cost of expensive non-LTE simulations, although these additional calculations could 
undoubtedly be optimized. 

 
Developing criteria for determining when to apply the diagonal response function would be one path 

towards applying the extended algorithm as a general-purpose algorithm.  Alternatively, using the full 
response function would bypass this difficulty, but at a high computational cost since all (or many) cross-
derivatives would also be required.  To avoid this expense, we are investigating the use of tabulated 
material properties, including full response functions, using a technique closely related to the linear 
response matrix method for near-LTE conditions. 

 
 



5. Linear Response Matrix 
 

The linear response matrix (LRM) is a symmetric matrix R
νν ′  describing the change in energy 

absorption and emission at frequency ν due to the deviation of the radiation field from a Planckian at 
frequency ν’ [4]. 
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The symmetry of the LRM follows from the general principle of detailed balance [13].  An equivalent 
definition is given by the relationship 
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where the LHS of Eq. (22) is recognized as the quantity entering into the material energy equation.  The 
computational utility of the LRM derives from the framework it provides for calculating near-LTE 
radiation transport problems using only tabular information.  For our purposes, we require the individual 
derivatives from Eq. (21), instead of just the combination. 

 
The extent to which the linear description assumed by the LRM remains valid under non-LTE 

conditions will be the subject of a future discussion.  For our present purpose, we note that the components 
of the LRM, are the response quantities required by the extended transport algorithm, including all cross-
derivatives.  In this context, we view the LRM as a tabulation of these derivatives.  The questions to be 
addressed here are whether the derivatives evaluated at LTE can be used advantageously in the extended 
algorithm, and whether the tabular approach can be extended to situations far from LTE. 

 
In practice, the tabulated derivatives must be used carefully, with limits placed on both the intensity 

deviations (Jν-Bν) used to calculate corrections, and on the corrections themselves.  With these constraints, 
the method works quite well for the high-density test case of Sec. 4, reproducing the results of Fig. (9a).  
However, since an LTE treatment does just as well, the derivatives have no significant effect here.  For the 
mid-density case, the resulting temperature profiles are shown in Fig. (10) along with the LTE and non-
LTE results.  Using the tabulated derivatives reproduces some of the features of the non-LTE solution, but 
overall the results are slight worse than the strictly LTE treatment.  Similar results are obtained at lower 
densities.  The cause of this behavior is under investigation. 

 
One possible failure of the LRM approach is overstepping the linear regime.  Extending the reach of 

the tabular approach will require tabulating information not only at LTE, but for non-LTE conditions as 
well.  We are now experimenting with evaluating the required quantities at points characterized by separate 
material and radiation temperatures.  The additional parameter used in the tables is the ratio of the radiation 
temperature to the material temperature.  Early results from this work are encouraging, but much work 
remains to be done. 

 
 

6. Summary 
 
Solving the radiation transport equation also involves evaluating material properties that can depend on 

the radiation field.  In LTE, the material properties depend only on the material temperature, and the 
computational focus lies in calculating energy transport by broadband radiation and energy exchange 
between the material and radiation.  In non-LTE, the material properties can depend directly on the 
radiation field, and the coupling between the material and radiation takes on a different character, which is 
reflected in the computational algorithms.  In this paper, we have demonstrated an extended version of a 
broadband radiation transport algorithm that combines features of both types of transport schemes.  The 
extended algorithm successfully handles applications with strong broadband and line radiation.  
Incorporating line radiation features into the algorithm improves both the stability and convergence of 



simulations with strong radiation fields, as demonstrated by an example based on a Z-pinch dynamic 
hohlraum. 

 
The numerical implementation of the extended algorithm requires additional information about the 

response of the material properties to radiation.  The full set of response information is prohibitively 
expensive to calculate inline with the radiation transport, but a low-density approximation using only the 
diagonal of the response matrix, only modestly increases the computational cost.  Preliminary 
investigations into the use of tabulated material information, including the full response matrix, have been 
only slightly encouraging.  However, a successful approach of this type would not only permit routine use 
of the extended algorithm, but would greatly speed up broadband non-LTE calculations.  This will be a 
topic for future research. 
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Figure Captions 
 
Fig. 1a Specific heat per ion as a function of temperature for a Lu plasma of number density 1018 cm-3, in 

units eV/eV.  The thick solid line gives the LTE specific heat, the thin solid line gives the non-LTE 
specific heat for a Planckian radiation field (Tr= Te, where Te is the material temperature and Tr is the 
radiation temperature), and the thin dashed line gives the non-LTE specific heat with no radiation field 
(Tr=0).  The dotted line gives the specific heat obtained from Eq. (4) using the diagonal approximation. 

 
Fig. 1b Same as Fig. 1a for a number density of 1020 cm-3. 
 
Fig. 1c Same as Fig. 1a for a number density of 1022 cm-3. 
 
Fig. 2 Diagram of geometry for example application, consisting of an annular cylinder comprised of 

uniform density Lu between radii r0 = 0.16 cm and r3 = 0.36 cm, illuminated at r = r0 by a 250 eV 
Planckian radiation source. 

 
Fig. 3 Optical depth as a function of photon energy along a radial line between r0 and r3.  The upper solid 

curve is for a number density of 1020 cm-3 and the lower solid curve is for a density of 1018 cm-3.  The 
dotted curve is for a density of 1018 cm-3, assuming LTE. 

 
Fig. 4a Radiation intensity (thick line), Jν, and Planck function (thin line), Bν, at r = r0 (solid lines) and r = 

r3 (dotted lines) for a number density of 1018 cm-3. 
 
Fig. 4b Same as Fig. 4a for a number density of 1020 cm-3. 
 
Fig. 5a Source function (thick line), Sν, and Planck function (thin line), Bν, at r = r0 (solid lines) and r = r3 

(dotted lines) for a number density of 1018 cm-3. 
 
Fig. 5b Same as Fig. 5a for a number density of 1020 cm-3. 
 
Fig. 6a Diagonal source response function, S Jν ν∂ ∂ , at r = r0 (solid lines) and r = r3 (dotted lines) for a 

number density of 1018 cm-3. 
 
Fig. 6b Same as Fig. 5a for a number density of 1020 cm-3. 
 
Fig. 7a Final material temperature (solid curves) and radiation temperature (dashed curves) profiles for a 

number density of 1018 cm-3.  The heavy curves correspond to a converged non-LTE calculation and 
the light curves correspond to an LTE calculation. 

 
Fig. 7b Material temperature as a function of time at positions r = r0, r1, r2 and r3 for a number density of 

1018 cm-3.  The solid lines correspond to a non-LTE calculation using the extended algorithm as 
described in the text, while the dashed lines correspond to a non-LTE calculation using the broadband 
algorithm. 

 
Fig. 8a Same as Fig. 6a for a number density of 1019 cm-3. 
 
Fig. 8b Same as Fig. 6b for a number density of 1019 cm-3. 
 
Fig. 9a Same as Fig. 6a for a number density of 1020 cm-3.  The non-LTE results were obtained without 

the intensity derivatives. 
 
Fig. 9b Same as Fig. 6b for a number density of 1020 cm-3. 
 



Fig. 10 Final material temperature for a number density of 1019 cm-3.  The heavy curve corresponds to a 
converged non-LTE calculation, the light solid curve corresponds to an LTE calculation, and the light 
dashed curve corresponds to a calculation using tabulated LRM information. 
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Figure 1c 
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