Premium Fuel Production From Mining and Timber Waste Using Advanced Separation and Pelletizing Technologies

PDF Version Also Available for Download.

Description

The Commonwealth of Kentucky is one of the leading states in the production of both coal and timber. As a result of mining and processing coal, an estimated 3 million tons of fine coal are disposed annually to waste-slurry impoundments with an additional 500 million tons stored at a number of disposal sites around the state due to past practices. Likewise, the Kentucky timber industry discards nearly 35,000 tons of sawdust on the production site due to unfavorable economics of transporting the material to industrial boilers for use as a fuel. With an average heating value of 6,700 Btu/lb, the ... continued below

Physical Description

218pp. 2.9MB

Creation Information

Honaker, R. Q.; Taulbee, D.; Parekh, B. K. & Tao, D. December 5, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Commonwealth of Kentucky is one of the leading states in the production of both coal and timber. As a result of mining and processing coal, an estimated 3 million tons of fine coal are disposed annually to waste-slurry impoundments with an additional 500 million tons stored at a number of disposal sites around the state due to past practices. Likewise, the Kentucky timber industry discards nearly 35,000 tons of sawdust on the production site due to unfavorable economics of transporting the material to industrial boilers for use as a fuel. With an average heating value of 6,700 Btu/lb, the monetary value of the energy disposed in the form of sawdust is approximately $490,000 annually. Since the two industries are typically in close proximity, one promising avenue is to selectively recover and dewater the fine-coal particles and then briquette them with sawdust to produce a high-value fuel. The benefits are i) a premium fuel product that is low in moisture and can be handled, transported, and utilized in existing infrastructure, thereby avoiding significant additional capital investment and ii) a reduction in the amount of fine-waste material produced by the two industries that must now be disposed at a significant financial and environmental price. As such, the goal of this project was to evaluate the feasibility of producing a premium fuel with a heating value greater than 10,000 Btu/lb from waste materials generated by the coal and timber industries. Laboratory and pilot-scale testing of the briquetting process indicated that the goal was successfully achieved. Low-ash briquettes containing 5% to 10% sawdust were produced with energy values that were well in excess of 12,000 Btu/lb. A major economic hurdle associated with commercially briquetting coal is binder cost. Approximately fifty binder formulations, both with and without lime, were subjected to an extensive laboratory evaluation to assess their relative technical and economical effectiveness as binding agents for the briquetting of 90% coal and 10% sawdust blends. Guar gum, wheat starch, and a multi-component formulation were identified as most cost-effective for the production of briquettes targeted for the pulverized-coal market with costs being around $8 per ton of the coal-sawdust blend. REAX/lime and a second multi-component formulation were identified as the most cost-effective for the production of briquettes targeted for the stoker-coal market. Various sources of sawdust generated from different wood types were also investigated to determine their chemical properties and to evaluate their relative performance when briquetted with clean coal to form a premium fuel. The highest heating values, approaching 7,000 Btu/lb, were obtained from oak. Sawdusts from higher-density, red oak, white oak, hickory, and beech trees provided higher quality briquettes relative to their lower-density counterparts. In addition to sawdust type, a number of other parameters were evaluated to characterize their impact on briquette properties. The parameters that exhibited the greatest impact on briquette performance were binder concentration; sawdust concentration and particle size; cure temperature; and ash content. Parameters that had the least impact on briquette properties, at least over the ranges studied, were moisture content, briquetting force, and briquetting dwell time. The continuous production of briquettes from a blend of coal and sawdust was evaluated using a 200 lbs/hr Komarek Model B-100 briquetter. The heating values of briquettes produced by the unit exceeded the goal of the project by a large margin. A significant observation was the role of feed moisture on the stability of the mass flow rate through the briquetter and on briquette strength. Excessive feed moisture levels caused inconsistent or stoppage of material flow through the feed hopper and resulted in the production of variable-quality briquettes. Obviously, the limit on feed moisture content has a significant impact on the economics of coal-sawdust briquetting since it will ultimately dictate dewatering costs. Interestingly, the maximum feed moisture was found to be dependent to some extent on the binder type with molasses-containing blends being difficult to feed when the moisture content approached 12% while guar gum blends flowed consistently at moisture levels as high as 15% by weight. Due to the low ash and moisture contents of the coal-sawdust briquettes, a production increase of about 50 tons/hr would potentially be realized at a 1,400 ton/hr preparation plant. The overall capital cost of a 50 ton/hr flotation and briquetting addition was estimated to be around $8 million. Based on a conservative briquetting operating cost of $12/ton, the annual profit before taxes was approximated to be $4 million thereby indicating a return on investment in about 2 years. The internal rate of return based on a 10 year life was an attractive 43%.

Physical Description

218pp. 2.9MB

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FC36-02ID14273
  • DOI: 10.2172/876474 | External Link
  • Office of Scientific & Technical Information Report Number: 876474
  • Archival Resource Key: ark:/67531/metadc881087

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 5, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Jan. 9, 2017, 10:57 a.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Honaker, R. Q.; Taulbee, D.; Parekh, B. K. & Tao, D. Premium Fuel Production From Mining and Timber Waste Using Advanced Separation and Pelletizing Technologies, report, December 5, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc881087/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.