Stress Development and Relaxation in Al2O3 during Early StageOxidation of beta-NiAl

PDF Version Also Available for Download.

Description

Using a glancing synchrotron X-ray beam (Advanced Photon Source, Beamline 12BM, Argonne National Laboratory), Debye-Scherrer diffraction patterns from thermally grown oxides on NiAl samples were recorded during oxidation at 1000 or 1100 C in air. The diffraction patterns were analyzed to determine strain and phase changes in the oxide scale as it developed and evolved. Strain was obtained from measurements of the elliptical distortion of the Debye-Scherrer rings, where data from several rings of a single phase were used. Results were obtained from {alpha}-Al{sub 2}O{sub 3} as well as from the transition alumina, in this case {theta}-Al{sub 2}O{sub 3}, which ... continued below

Creation Information

Hou, P.Y.; Paulikas, A.P. & Veal, B.W. April 20, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Using a glancing synchrotron X-ray beam (Advanced Photon Source, Beamline 12BM, Argonne National Laboratory), Debye-Scherrer diffraction patterns from thermally grown oxides on NiAl samples were recorded during oxidation at 1000 or 1100 C in air. The diffraction patterns were analyzed to determine strain and phase changes in the oxide scale as it developed and evolved. Strain was obtained from measurements of the elliptical distortion of the Debye-Scherrer rings, where data from several rings of a single phase were used. Results were obtained from {alpha}-Al{sub 2}O{sub 3} as well as from the transition alumina, in this case {theta}-Al{sub 2}O{sub 3}, which formed during the early stage. Compressive stress was found in the first-formed transition alumina, but the initial stress in {alpha}-Al{sub 2}O{sub 3} was tensile, with a magnitude high enough to cause Al{sub 2}O{sub 3} fracture. New {alpha}-Al{sub 2}O{sub 3} patches nucleated at the scale/alloy interface and spread laterally and upward. This transformation not only puts the alpha alumina in tension, but can also cause the transition alumina to be in tension. After a complete {alpha}-Al{sub 2}O{sub 3} layer formed at the interface, the strain level in {alpha}-Al{sub 2}O{sub 3} became compressive, reaching a steady state level around -75 MPa at 1100 C. To study a specimen's response to stress perturbation, samples with different thickness, after several hours of oxidation at 1100 C, were quickly cooled to 950 C to impose a compressive thermal stress in the scale. The rate of stress relaxation was the same for 1 and 3.5 mm thick samples, having a strain rate of {approx} 1 x 10{sup -8}/s. This behavior indicates that oxide creep is the major stress relaxation mechanism.

Source

  • 6th International Conference on the Microscopy ofOxidation, U. of Birmingham, UK, April 4-6, 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--57386
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 877616
  • Archival Resource Key: ark:/67531/metadc881075

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 20, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Sept. 29, 2016, 7:04 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hou, P.Y.; Paulikas, A.P. & Veal, B.W. Stress Development and Relaxation in Al2O3 during Early StageOxidation of beta-NiAl, article, April 20, 2005; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc881075/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.