Characteristics of laser-driven electron acceleration invacuum

PDF Version Also Available for Download.

Description

The interaction of free electrons with intense laser beamsin vacuum is studied using a 3D test particle simulation model thatsolves the relativistic Newton-Lorentz equations of motion inanalytically specified laser fields. Recently, a group of solutions wasfound for very intense laser fields that show interesting and unusualcharacteristics. In particular, it was found that an electron can becaptured within the high-intensity laser region, rather than expelledfrom it, and the captured electron can be accelerated to GeV energieswith acceleration gradients on the order of tens of GeV/cm. Thisphenomenon is termed the capture and acceleration scenario (CAS) and isstudied in detail in this paper. ... continued below

Creation Information

Wang, P.X.; Ho, Y.K.; Yuan, X.Q.; Kong, Q.; Sessler, A.M.; Esarey, E. et al. November 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The interaction of free electrons with intense laser beamsin vacuum is studied using a 3D test particle simulation model thatsolves the relativistic Newton-Lorentz equations of motion inanalytically specified laser fields. Recently, a group of solutions wasfound for very intense laser fields that show interesting and unusualcharacteristics. In particular, it was found that an electron can becaptured within the high-intensity laser region, rather than expelledfrom it, and the captured electron can be accelerated to GeV energieswith acceleration gradients on the order of tens of GeV/cm. Thisphenomenon is termed the capture and acceleration scenario (CAS) and isstudied in detail in this paper. The maximum net energy exchange by theCAS mechanism is found to be approximately proportional to a 2_o, in theregime where a_o>100, where a_o = eE_o/m_ewc is a dimensionlessparameter specifying the magnitude of the laser field. The acceleratedGeV electron bunch is a macro-pulse, with duration equal or less thanthat of the laser pulse, which is composed of many micro-pulses that areperiodic at the laser frequency. The energy spectrum of the CAS electronbunch is presented. The dependence of the energy exchange in the CAS onvarious parameters, e.g., a 2_o (laser intensity), w_o (laser radius atfocus), tao (laser pulse duration), b_o (the impact parameter), andtheta_i (the injection angle with respect to the laser propagationdirection), are explored in detail. A comparison with diverse theoreticalmodels is also presented, including a classical model based on phasevelocities and a quantum model based on nonlinear Comptonscattering.

Source

  • Journal Name: Journal of Applied Physics; Journal Volume: 91; Journal Issue: 2; Related Information: Journal Publication Date: 15 January2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--49103
  • Report No.: CBP Note-407
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 899793
  • Archival Resource Key: ark:/67531/metadc880987

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 2001

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 29, 2016, 1:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wang, P.X.; Ho, Y.K.; Yuan, X.Q.; Kong, Q.; Sessler, A.M.; Esarey, E. et al. Characteristics of laser-driven electron acceleration invacuum, article, November 1, 2001; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc880987/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.