Characterization of a Dominant Electron Trap in GaNAs Using Deep-Level Spectroscopy

PDF Version Also Available for Download.

Description

Dilute-nitrogen GaNAs epitaxial layers grown by metal-organic chemical vapor deposition were characterized by deep-level transient spectroscopy (DLTS). For all samples, the dominant DLTS signal corresponds to an electron trap having an activation energy of about 0.25 to 0.35 eV. The minority-carrier trap density in the p-type material is quantified based on computer simulation of the devices. The simulations show that only about 2% of the traps in the depleted layer are filled during the transient. The fraction of the traps that are filled depends strongly on the depth of the trap, but only weakly on the doping of the layers ... continued below

Physical Description

9 p.

Creation Information

Johnston, S. W. & Kurtz, S. R. August 1, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Dilute-nitrogen GaNAs epitaxial layers grown by metal-organic chemical vapor deposition were characterized by deep-level transient spectroscopy (DLTS). For all samples, the dominant DLTS signal corresponds to an electron trap having an activation energy of about 0.25 to 0.35 eV. The minority-carrier trap density in the p-type material is quantified based on computer simulation of the devices. The simulations show that only about 2% of the traps in the depleted layer are filled during the transient. The fraction of the traps that are filled depends strongly on the depth of the trap, but only weakly on the doping of the layers and on the conduction-band offset. The simulations provide a pathway to obtain semi-quantitative data for analysis of minority-carrier traps by DLTS.

Physical Description

9 p.

Source

  • Presented at the 2005 MRS Fall Meeting, 28 November - 2 December 2005, Boston, Massachusetts

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NREL/CP-520-38334
  • Grant Number: AC36-99-GO10337
  • Office of Scientific & Technical Information Report Number: 899474
  • Archival Resource Key: ark:/67531/metadc880981

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • April 6, 2017, 3:26 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Johnston, S. W. & Kurtz, S. R. Characterization of a Dominant Electron Trap in GaNAs Using Deep-Level Spectroscopy, article, August 1, 2006; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc880981/: accessed November 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.