Investigating Uranium Isotopic Distributions in Environmental Samples Using AMS and MC-ICPMS

January 17, 2006

Nuclear Instruments and Methods B
Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.
Investigating uranium isotopic distributions in environmental samples using AMS and MC-ICPMS.

Presentation # P1-D7

Contact Author:
B. A. Buchholz
CAMS, L397
LLNL
P.O. Box 808
Livermore, CA 94551
USA
Buchholz2@llnl.gov
925-422-1739 (V)
925-423-7884 (FAX)

Presented at 10th International Conference on Accelerator Mass Spectrometry
Berkeley, CA
September 5-10, 2005
Investigating uranium isotopic distributions in environmental samples using AMS and MC-ICPMS.

Abstract

Major, minor, and trace uranium isotopes were measured at Lawrence Livermore National Laboratory in environmentally acquired samples using different instruments to span large variations in concentrations. Multi-collector inductively-coupled plasma mass spectrometry (MC-ICPMS) can be used to measure major and minor isotopes: ^{238}U, ^{235}U, ^{234}U and ^{236}U. Accelerator mass spectrometry (AMS) can be used to measure minor and trace isotopes: ^{234}U, ^{236}U, and ^{233}U. The main limit of quantification for minor or trace uranium isotopes is the abundance sensitivity of the measurement technique; i.e., the ability to measure a minor or trace isotope of mass M in the presence of a major isotope at $M±1$ mass units. The abundance sensitivity for $^{236}\text{U}/^{235}\text{U}$ isotope ratio measurements using MC-ICPMS is around $\sim2\times10^{-6}$. This compares with a $^{236}\text{U}/^{235}\text{U}$ abundance sensitivity of $\sim1\times10^{-7}$ for the current AMS system, with the expectation of 2-3 orders of magnitude improvement in sensitivity with the addition of another high energy filter. Comparing $^{236}\text{U}/^{234}\text{U}$ from MC-ICPMS and AMS produced agreement within $\sim10\%$ for samples at ^{236}U levels high enough to be measurable by both techniques.
1.0 Introduction

Before the development of mass spectrometry techniques uranium isotopes were detected and quantified using α-particle spectroscopy. Samples were dissolved in acid, the uranium was chemically purified and concentrated, and the uranium was plated onto a counting planchette. Sample size was constrained to prevent self-shielding and sensitivity was often limited by counting time. Rare isotopes with long half-lives were difficult to detect by decay counting. Many health physics and environmental monitoring labs continue to use α-particle spectroscopy today since techniques are well established, sampling processing is relatively simple, and regulations regarding exposures and releases are in terms of α-activity.

The history of mass spectrometry applied to uranium goes back at least to experiments carried out by Nier in the early 1940s. Nier produced U+ ions by electron bombardment of UBr$_4$ and measured the abundance of ^{235}U and ^{234}U [1]. Shortly thereafter, calutrons were used at Oak Ridge to produce ^{235}U for the US atomic bomb program during WWII. High precision measurements (better than 0.1%) go back at least to the late 1950s [2]. The development of mass spectrometry analysis techniques significantly improved quantitation for long-lived (semi-stable) isotopes [3-8]. In alpha spectroscopy, detection efficiency is ultimately determined by the ability to retain uranium during the chemical separation and the detector geometry. The chemical form of the uranium on the planchette is not that important as long as the sample is plated thinly. In mass spectrometry, ion source efficiency is generally the limiting factor. Sample matrix and chemical form can dramatically affect ionization efficiency. The formation of hydrides
in positive ion sources (TIMS, ICPMS) can cause interferences with M-1 isotopes, e.g.,
\(^{235}\text{UH}^+\) and \(^{236}\text{U}^+\). AMS initially produces negative ions (\(^{236}\text{U}^{16}\text{O}^-\), \(^{235}\text{U}^{16}\text{OH}^-\) and
\(^{235}\text{U}^{17}\text{O}^-\)) that are subsequently destroyed in the high energy collision cell that strips
electrons to produce a positive charge state. The charge state selected varies among AMS
systems and depends upon the charge state distribution and beam transport limitations at
each facility. The first \(^{236}\text{U}\) AMS measurements were reported by Zhao, et al. (1994) [9],
who analyzed Canadian uranium ores. Since then several AMS facilities have pursued
\(^{236}\text{U}\) measurements [10-16]. To date, the lowest reported \(^{236}\text{U}/^{238}\text{U}\) ratios (~10\(^{-12}\)) were
recorded in mountain spring water samples [17].

\(^{236}\text{U}\) is produced though neutron capture by \(^{235}\text{U}\). In a natural ore or mineral, neutrons are
produced from the spontaneous fission of \(^{238}\text{U}\) and \(^{235}\text{U}\), neutron fission of \(^{235}\text{U}\), and \((\alpha,n)\)
reactions with lighter elements in the mineral matrix. The relative importance of these
processes for neutron production were discussed by Seaborg and others more than 50
years ago during the quantitation of naturally occurring \(^{239}\text{Pu}\) and \(^{237}\text{Np}\) [18-27]. These
early papers did not discuss the \(^{236}\text{U}\) natural abundance, but only mentioned \(^{236}\text{U}\)
production as a sink for neutrons, limiting natural production of \(^{239}\text{Pu}\). Natural \(^{236}\text{U}/^{238}\text{U}\)
ratios on the order of 10\(^{-10}\) have been reported in a variety of uranium containing ores and
minerals [9,10,12,28-30], but no widespread survey has been completed to date because
levels are too low for routine detection by techniques other than AMS. These studies
indicate that if the \(^{236}\text{U}/^{238}\text{U}\) ratio is greater than 10\(^{-9}\) (\(^{236}\text{U}/^{234}\text{U}> 2 \times 10^{-5}\)), the sample has
seen a significant neutron flux.
The early papers discussing Pu production in natural materials also addressed the role of 232Th in scavenging neutrons in some ores and minerals. The consequence of neutron capture by 232Th is production of 233U through the reaction chain 232Th (n,γ)233Th → 233Pa → 233U. The other natural production chain for 233U is 238U (n,2n)237U → 237Np → 233Pa → 233U. Determination of the naturally occurring parent of the (4n + 1) uranium series motivated the search for naturally occurring 237Np [19-23]. Small quantities of 237Np were measured [20,21,23], but the dominant production path for 233U is likely to be through neutron capture by 232Th. The natural concentration of 233U/238U in ores is estimated to be $10^{-11} – 10^{-15}$ and no systematic survey has been conducted. The large variation in concentration of 233U is due to variable concentrations of Th and competing neutron absorbers in ores and minerals.

We employed MC-ICPMS and AMS to conduct measurements of major and minor uranium isotopes in set of environmental samples. Table 1 lists the natural concentrations of uranium isotopes and the analytical methods used to measure them at LLNL. Both techniques measured 234U and 236U. AMS used a 233U spike for normalization of and the samples were not measured for intrinsic 233U or 232U content.

2.0 Experimental

2.1 ICP-MS

The isotopic analyses of uranium by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) were made with an IsoProbe (GV Instruments) using a static multi-collection method. Samples were dissolved in 2% HNO₃ and introduced into the plasma with a Cetac Aridus® system. Operating at an uptake rate of 60 microliters per
minute, ^{238}U beams of greater than 4×10^{-12} amps were commonly obtained for a 1 ppb natural uranium solution, which translates to a total efficiency (ions detected/atoms consumed) of about 1%. ^{236}U was measured using the Daly detector pulse-counting system, while the ion currents from ^{235}U and ^{238}U were measured simultaneously on Faraday cup detectors. The efficiency of the pulse-counting system with respect to the Faraday cup detectors was determined by measuring ^{234}U on the Daly detector for a natural uranium standard with known $^{234}\text{U}/^{235}\text{U}$. This standard is NIST SRM 4321C, which derives from NBS SRM 960 = NBL CRM-112A (as does the NBL CRM 145 uranium normal solution). The $^{238}\text{U}/^{235}\text{U}$ of natural uranium is assumed to be 137.88 and the instrumental mass bias for uranium is calculated from the measured ratio on the Faraday detectors. After subtraction of the blank signal on the Daly detector at mass 234, which is determined on a pure 29% HNO$_3$ solution, the $^{234}\text{U}/^{235}\text{U}$ is corrected for instrumental mass bias using an exponential correction factor derived from Equation A4 in Russell et al. (1978) [31]. The exponent is determined from $^{238}\text{U}/^{235}\text{U}$ analyses of a uranium standard of known isotopic composition that bracket the sample analyses. Comparison of this blank-and-mass-bias-corrected ratio with the standard value gives the relative Daly/Faraday gain factor, which is found to be constant to within 0.3% (total range) for an analytical session. The measured ^{236}U ion currents on the Daly detector are corrected for blank, mass bias and Daly/Faraday gain. No correction is made for $^{235}\text{U}^{-1}\text{H}$ because uranium hydride occurs at less than 1 ppm (i.e., $^{235}\text{UH}^+/^{235}\text{U}^+ < 1 \times 10^{-6}$), as measured at mass 239 with respect to ^{238}U. However, isobaric interferences at 10’s to 100’s of counts-per-second are seen on the IsoProbe at all masses in the actinide region, and this background at mass 236 results in an abundance sensitivity limit for $^{236}\text{U}/^{235}\text{U}$ of
approximately 2×10^{-6}. The external precision on $^{236}\text{U}/^{235}\text{U}$ ratios is 0.3% (2-std. dev. of the population), as measured on NBS U010 isotopic standard. The mean value for $^{236}\text{U}/^{235}\text{U}$ obtained for replicate analyses of this standard is within 0.02% of the new NBL value measured by Richter and Goldberg (2001) [32].

2.2 AMS

Uranium samples were converted to a manageable amount of solid for use in the AMS ion source. In the case of environmental samples, the uranium is solubilized by acid digestion, separated, and purified, following standard procedures common to other techniques such as alpha spectrometry. The purified solution containing 400 ng U was taken to dryness, the uranium redissolved in 10 mL of 3 M HNO$_3$, and coprecipitated with 0.3 mg of Fe(III) by adding a 1:1 solution of NH$_4$OH. The precipitate was centrifuged, washed, and transferred to a ~1-mL capacity quartz crucible where it was taken to dryness. The solid in the crucible was subsequently heated to 800°C in a muffle furnace to convert it to the oxide form. Once cool, 3 mg of niobium metal was added to the crucible and mixed with the oxide. The solid, comprised mostly of Fe$_2$O$_3$ and Nb, was scraped from the crucible and loaded in an aluminum target holder. Blanks and standards were prepared in the same manner to turn them into solid form. For routine measurements of ^{236}U, pure ^{233}U spike was added as a reference tracer. For measurements of ^{233}U, a ^{236}U spike is added as a reference. Typical samples contain 50 – 500 ng U with 3×10^9 atoms of the reference spike.
A description of the AMS system for heavy element analysis can be found in the literature [13,33]. In automatic operation, the system measures up to 5 different isotopes consecutively. Electrostatic deflector plates after the 30° mass-analyzing magnet were used in combination with the fast mass switching capability of the low-energy spectrometer for isotope mass selection and fast normalization, i.e., fast switching between an isotope of interest and the reference isotope with measurement time intervals of hundreds of milliseconds. This improves the accuracy and precision of the measured ratios because the ion source output remains essentially constant between the short sampling intervals.

During each isotope measurement cycle, the system alternates between an isotope of interest and the reference isotope using sampling intervals of 400 and 100 msec, respectively. The measurement time per isotope was normally 10 seconds and the set of up to 5 isotopes was repeated 3 times per cycle for 15 total measurements per cycle. This measurement cycle was repeated 6-8 times for each sample. One of the 5 isotopes is routinely selected to be the reference isotope. This reference/reference measurement should yield a ratio of 1 and is used to normalize the data for any differences between the two acquisition channels (electronics, manual gates, etc.). The high-energy spectrometer was set to select the 5+ charge state ($E_{\text{kinetic}} = 39$ MeV) for detection. The signals from the detector were used to set a charge gate to count the 5+ events only, using an interactive two-dimensional plot of the energy signal of one anode of the detector versus the other. This gate was sufficient to reject neighboring 4+ and lower charge-state ions that make it to the detector due to scattering in the high energy ESA.
The $^{236}\text{U}/^{233}\text{U}$ control standards and “blank” samples were prepared using standard stock solutions. The solutions were prepared from a natural uranium standard (NBL CRM 112-A), a ^{236}U standard (IPL 7336) and a ^{233}U standard (IPL 7233). A ^{233}U spike of 3×10^9 atoms was added to all samples for normalization. The quantity of ^{236}U included for construction of a calibration curve varied between 10^6 and 10^8 atoms. The calibration generated during the measurements of this sample set is depicted in Fig. 1. The average of six sample blanks was 2.2×10^6 atoms of ^{236}U, significantly higher than our typical level of $\sim 5 \times 10^5$ ^{236}U atoms [13]. The sample set was co-processed with samples containing 10^{11} atoms of ^{236}U, which adversely skewed the blanks.

3.0 Results & Discussion

3.1 Major Uranium Isotopes

Analysis of major uranium isotopes in these environmental samples by MC-ICPMS produced ratios similar to natural uranium (Table 2). The isotopic ratios varied slightly from the accepted natural levels, but were not significantly enriched or depleted. The variation of U isotopes reported in natural deposits [28,34-37] is narrower than the range measured in our samples. Since the samples were acquired from a variety of sources, anthropogenic activities may have skewed the natural isotopic abundances from those found in ores and minerals.

3.2 ^{236}U Measurements

Samples were analyzed for ^{234}U and ^{236}U content by both MC-ICPMS and AMS. Both techniques report concentrations in terms of ratios to a different U isotope. MC-ICPMS
measures ^{234}U and ^{236}U with respect to ^{235}U and AMS measures them with respect to the counts from a ^{233}U spike of 3×10^9 atoms. The techniques can be compared using the $^{236}\text{U}/^{234}\text{U}$ ratio. Table 3 lists the $^{236}\text{U}/^{234}\text{U}$ ratio for samples A-M and the $^{236}\text{U}/^{234}\text{U}$ ratio of 1.82×10^{-6} assuming a natural $^{236}\text{U}/\text{U}$ concentration on the higher end of its natural range in ores of 10^{10}. The uncertainty in the AMS ratio is calculated from the square root of the sum of the squares of the relative uncertainties in number of ^{236}U and ^{234}U atoms counted. The relative uncertainty in the ^{236}U measurement is always the dominant term. The uncertainty in the MC-ICPMS ratio was calculated in a similar manner based on the $^{234}\text{U}/^{235}\text{U}$ and $^{236}\text{U}/^{235}\text{U}$ ratios. Again, the ^{236}U measurement drives the uncertainty since it is less precise due to its lower concentration.

Several of the environmental samples contained elevated levels of ^{236}U, indicating the sample had been exposed to neutrons in the past or had been contaminated with reprocessed uranium. Analysis of the samples for other neutron capture products, as was done in the search for natural ^{239}Pu and ^{237}Np [19-24], might confirm which scenario is correct. Failure to detect other neutron capture products does not rule out exposure to an anthropogenic neutron source, however, since elements are transported differently in the environment depending on chemical form.

The main limit of quantification for minor or trace uranium isotopes is the abundance sensitivity of the measurement technique, i.e., the ability to measure a minor or low abundance isotope in the presence of a major isotope at M±1 mass units. The abundance sensitivity for $^{236}\text{U}/^{235}\text{U}$ isotope ratio measurements using MC-ICPMS is $\sim 2 \times 10^{-6}$. This compares with a $^{236}\text{U}/^{235}\text{U}$ abundance sensitivity of $\sim 1 \times 10^{-7}$ for the AMS system as
configured during these measurements. The recent addition of a new low energy injection magnet with a large pole gap has improved transmission efficiency on the AMS system but has not significantly changed the abundance sensitivity.

The major outcome of this study is the agreement between MC-ICPMS and AMS results for the samples that contained levels of ^{236}U measurable by both methods (Fig. 2). The uncertainties depicted in Fig. 2 are as described above for Table 3. These uncertainties are associated with counting statistics and the inherent uncertainties of the standards. In most cases, $^{236}\text{U}/^{234}\text{U}$ measurements by AMS produced lower values than MC-ICPMS. Checks of the ^{233}U concentrations of the reference spike solutions confirmed the magnitudes of the spikes. Differences in sample processing between the independent MS techniques may be responsible for the variability observed. To our knowledge, this study is the first to demonstrate a strictly linear correspondence between MC-ICPMS and AMS for U isotopes. Neither MS method employed could reach the “natural ore” $^{236}\text{U}/^{234}\text{U}$ of $\sim 2 \times 10^{-6}$. Most of other AMS systems currently measuring ^{236}U, as described at the AMS-10 Meeting in September 2005, seem to have the same limits in quantitation. Hebrew University [13] and VERA [17] previously reported measuring $^{236}\text{U}/\text{U}$ below 10^{-10} ($^{236}\text{U}/^{234}\text{U} < 2 \times 10^{-6}$). The VERA facility is also the only one with an additional high energy filter before the detector to remove rare scattered ions masquerading as ^{236}U [17].

4.0 Conclusions

MC-ICPMS and AMS are complementary analysis methods with the ability to independently measure ^{234}U and ^{236}U. AMS analysis independently confirms elevated ^{236}U measurements by MC-ICPMS. The current AMS system at LLNL lowers ^{236}U
quantitation more than an order of magnitude below MC-ICPMS. Plans for adding an additional high energy filter to the AMS system are underway, which should drop our 235U scattering background 2-3 orders of magnitude. We anticipate a capability for routine measurement of natural levels of 236U and 233U after this addition. Our current capability of measuring 233U is actually better than 236U due to chemical removal of the scattering M-1 isotope (232Th) during sample processing. Several other natural neutron monitors are potentially present in some ores and minerals. Beyond the classics 239Pu and 237Np, several AMS facilities could assess 41Ca and 36Cl concentrations with current measurement capabilities.

Acknowledgement

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
References

Table 1. Natural Abundances of Uranium Isotopes and Measurement Technique Used to Quantify them. Isotopes are described as major, minor or trace. 232U is currently measured by α-spectroscopy due to its short half-life and mass interference with 232Th.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Natural U concentration (%)</th>
<th>MC-ICPMS</th>
<th>AMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>238U</td>
<td>99.2745</td>
<td>major</td>
<td></td>
</tr>
<tr>
<td>236U</td>
<td>10^{-10} - 10^{-8}</td>
<td>minor</td>
<td>minor</td>
</tr>
<tr>
<td>235U</td>
<td>0.720</td>
<td>major</td>
<td></td>
</tr>
<tr>
<td>234U</td>
<td>0.0055</td>
<td>minor</td>
<td>minor</td>
</tr>
<tr>
<td>233U</td>
<td>10^{-13} - 10^{-9}</td>
<td>trace</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Major uranium isotope concentrations measured by MC-ICPMS.

<table>
<thead>
<tr>
<th>Sample</th>
<th>238 / 235</th>
<th>$\pm 2 \sigma$</th>
<th>234 / 235</th>
<th>$\pm 2 \sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>137.77</td>
<td>0.07</td>
<td>7.565E-03</td>
<td>3.5E-05</td>
</tr>
<tr>
<td>B</td>
<td>137.80</td>
<td>0.07</td>
<td>7.558E-03</td>
<td>3.5E-05</td>
</tr>
<tr>
<td>C</td>
<td>137.98</td>
<td>0.06</td>
<td>7.581E-03</td>
<td>3.2E-05</td>
</tr>
<tr>
<td>D</td>
<td>137.92</td>
<td>0.06</td>
<td>7.572E-03</td>
<td>3.2E-05</td>
</tr>
<tr>
<td>E</td>
<td>137.15</td>
<td>0.09</td>
<td>7.603E-03</td>
<td>3.6E-05</td>
</tr>
<tr>
<td>F</td>
<td>137.65</td>
<td>0.24</td>
<td>7.539E-03</td>
<td>4.1E-05</td>
</tr>
<tr>
<td>G</td>
<td>137.90</td>
<td>0.12</td>
<td>7.578E-03</td>
<td>4.3E-05</td>
</tr>
<tr>
<td>H</td>
<td>137.85</td>
<td>0.11</td>
<td>7.556E-03</td>
<td>3.6E-05</td>
</tr>
<tr>
<td>I</td>
<td>136.84</td>
<td>0.25</td>
<td>7.636E-03</td>
<td>4.7E-05</td>
</tr>
<tr>
<td>J</td>
<td>137.45</td>
<td>0.12</td>
<td>7.587E-03</td>
<td>4.1E-05</td>
</tr>
<tr>
<td>K</td>
<td>137.70</td>
<td>0.25</td>
<td>7.507E-03</td>
<td>4.5E-05</td>
</tr>
<tr>
<td>L</td>
<td>137.65</td>
<td>0.24</td>
<td>7.539E-03</td>
<td>4.1E-05</td>
</tr>
<tr>
<td>M</td>
<td>137.45</td>
<td>0.12</td>
<td>7.587E-03</td>
<td>4.1E-05</td>
</tr>
<tr>
<td>Nat U</td>
<td>137.88</td>
<td></td>
<td>7.639E-03</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. $^{236}\text{U}/^{234}\text{U}$ ratio measured by MC-ICPMS and AMS.

<table>
<thead>
<tr>
<th>RSample</th>
<th>ICPMS $^{236}\text{U}/^{234}\text{U}$</th>
<th>±2σ</th>
<th>AMS $^{236}\text{U}/^{234}\text{U}$</th>
<th>±2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.38E-03</td>
<td>2.91E-04</td>
<td>2.89E-03</td>
<td>3.03E-04</td>
</tr>
<tr>
<td>B</td>
<td>< 2.65E-04</td>
<td>< 8.00E-05</td>
<td>< 8.00E-05</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>< 2.64E-04</td>
<td>< 8.20E-05</td>
<td>< 8.20E-05</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>< 2.64E-04</td>
<td>< 9.23E-05</td>
<td>< 9.23E-05</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1.74E-02</td>
<td>1.06E-03</td>
<td>1.26E-02</td>
<td>8.62E-04</td>
</tr>
<tr>
<td>F</td>
<td>< 3.7E-03</td>
<td>< 8.81E-05</td>
<td>< 8.81E-05</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1.25E-02</td>
<td>1.32E-03</td>
<td>9.22E-03</td>
<td>6.28E-04</td>
</tr>
<tr>
<td>H</td>
<td>< 3.7E-03</td>
<td>6.10E-03</td>
<td>6.10E-03</td>
<td>4.99E-04</td>
</tr>
<tr>
<td>I</td>
<td>2.80E-02</td>
<td>1.58E-03</td>
<td>2.42E-02</td>
<td>1.97E-03</td>
</tr>
<tr>
<td>J</td>
<td>2.29E-02</td>
<td>1.32E-03</td>
<td>1.85E-02</td>
<td>1.37E-03</td>
</tr>
<tr>
<td>K</td>
<td>< 3.7E-03</td>
<td>1.21E-04</td>
<td>6.07E-05</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>< 3.7E-03</td>
<td>< 8.76E-05</td>
<td>< 8.76E-05</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>2.29E-02</td>
<td>1.32E-03</td>
<td>1.82E-02</td>
<td>2.32E-03</td>
</tr>
<tr>
<td>Nat U</td>
<td>1.82E-06</td>
<td></td>
<td>1.82E-06</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. Calibration curve for AMS 236U measurements.
ICPMS Measurement of $^{236}\text{U}/^{234}\text{U}$

Fig. 2 Regression analysis comparison of $^{236}\text{U}/^{234}\text{U}$ measured by MC-ICPMS and AMS.