Proposal of An Experiment on Bunch Length Modulation in DAFNE

PDF Version Also Available for Download.

Description

Obtaining very short bunches is an issue especially for colliders but also for CSR sources. The modulation of the bunch length in a strong rf focusing regime had been proposed, corresponding to a high value of the synchrotron tune. A ring structure where the function R56 along the ring oscillates between large positive and negative values will produce bunch length modulation. The synchrotron frequency can be tuned both by the rf power and by the integral of the function R56, up to the limit of zero value corresponding to the isochronicity condition. The proposal of a bunch length modulation along ... continued below

Physical Description

3 pages

Creation Information

Biscari, C.; Alesini, D.; Benedetti, G.; Biagini, M.E.; Boni, R.; Boscolo, M. et al. January 20, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Obtaining very short bunches is an issue especially for colliders but also for CSR sources. The modulation of the bunch length in a strong rf focusing regime had been proposed, corresponding to a high value of the synchrotron tune. A ring structure where the function R56 along the ring oscillates between large positive and negative values will produce bunch length modulation. The synchrotron frequency can be tuned both by the rf power and by the integral of the function R56, up to the limit of zero value corresponding to the isochronicity condition. The proposal of a bunch length modulation along the ring in DA{Phi}NE is here described. DA{Phi}NE lattice can be tuned to positive or negative momentum compaction values, or to structures in which the two arcs are respectively set to positive/negative integrals of the R56 function. With the installation of an extra rf system at 1.3 GHz, experiments on bunch length modulation both in the regime of high and low synchrotron tune can be realized.

Physical Description

3 pages

Source

  • Prepared for Particle Accelerator Conference (PAC 05), Knoxville, Tennessee, 16-20 May 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-11656
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 878010
  • Archival Resource Key: ark:/67531/metadc880796

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 20, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 30, 2016, 6:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Biscari, C.; Alesini, D.; Benedetti, G.; Biagini, M.E.; Boni, R.; Boscolo, M. et al. Proposal of An Experiment on Bunch Length Modulation in DAFNE, article, January 20, 2006; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc880796/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.