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Climate change uncertainty for daily minimum and maximum temperatures: a model 1 

inter-comparison 2 

 3 

Abstract 4 

 Several impacts of climate change may depend more on changes in mean daily 5 

minimum (Tmin) or maximum (Tmax) temperatures than daily averages. To evaluate 6 

uncertainties in these variables, we compared projections of Tmin and Tmax changes by 7 

2046-2065 for 12 climate models under an A2 emission scenario. Average modeled 8 

changes in Tmax were slightly lower in most locations than Tmin, consistent with historical 9 

trends exhibiting a reduction in diurnal temperature ranges. However, while average 10 

changes in Tmin and Tmax were similar, the inter-model variability of Tmin and Tmax 11 

projections exhibited substantial differences. For example, inter-model standard 12 

deviations of June-August Tmax changes were more than 50% greater than for Tmin 13 

throughout much of North America, Europe, and Asia. Model differences in cloud 14 

changes, which exert relatively greater influence on Tmax during summer and Tmin during 15 

winter, were identified as the main source of uncertainty disparities. These results 16 

highlight the importance of considering separately projections for Tmax and Tmin when 17 

assessing climate change impacts, even in cases where average projected changes are 18 

similar. In addition, impacts that are most sensitive to summertime Tmin or wintertime 19 

Tmax may be more predictable than suggested by analyses using only projections of daily 20 

average temperatures. 21 

 22 

23 
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1. Introduction 1 

Climate models are often characterized by their climate sensitivity, defined as the 2 

equilibrium change in globally averaged surface temperature that results from a doubling 3 

of atmospheric carbon dioxide (CO2) levels [Cubasch, et al., 2001]. The range or 4 

standard deviation of climate sensitivity among different models provides a common 5 

measure of uncertainty in the response of the climate system to atmospheric CO2 6 

increases. For example, a range of 1.5 – 4.5 ºC is commonly cited based on evaluation of 7 

15+ models [Cubasch, et al., 2001], with recent studies suggesting this range should be 8 

slightly higher [Murphy, et al., 2004; Stainforth, et al., 2005]. 9 

 In addition to studies of average temperature responses, recent model inter-10 

comparisons have focused on changes in extreme temperature events, such as frost days 11 

or heat waves [Hegerl, et al., 2004; Tebaldi, et al., in press]. This focus reflects the 12 

importance of both average temperatures and extreme events in determining climate 13 

change impacts [Easterling, et al., 2000]. However, several societal and ecosystem 14 

impacts are more directly related to changes in mean daily minimum (Tmin; i.e., 15 

nighttime) or maximum (Tmax, i.e., daytime) temperatures than to average temperatures or 16 

extremes. For example, quantities such as growing degree days and accumulated chill 17 

hours, which are widely used in models to predict crop and pest development, are 18 

influenced differently by Tmin and Tmax [McMaster and Wilhelm, 1997; Wilkens and 19 

Singh, 2001]. In addition, changes in evapotranspiration and photosynthetic rates are 20 

likely to be more affected by Tmax than Tmin [Dhakhwa and Campbell, 1998]. 21 

 Much of the uncertainty in climate sensitivity has been attributed to model 22 

differences in cloud behavior [Soden and Held, 2006; Webb, et al., 2006]. Increased 23 
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cloud cover, particularly of low clouds, leads to a greater fraction of reflected solar 1 

radiation and therefore cooling of Tmax. In comparison, clouds have a relatively small net 2 

effect on Tmin [Dai, et al., 1999].  3 

Given the important role of clouds in climate change uncertainty and the 4 

differential effect of clouds on day and night temperatures, a reasonable hypothesis is that 5 

inter-model differences in Tmin changes would be smaller than associated Tmax changes. 6 

Here we evaluate this hypothesis with daily Tmin and Tmax output for simulations from 12 7 

general circulation models (GCMs) archived by the Program in Climate Model Diagnosis 8 

and Intercomparison (PCMDI; http://www-pcmdi.llnl.gov.) and used in the Fourth 9 

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC.)  10 

 11 

2. Models and Methods 12 

 Daily output of Tmin and Tmax used in this analysis were available for 12 models 13 

(Table 1). For each model, we computed average monthly and seasonal Tmin, Tmax, and 14 

average temperature (Tavg) for two available time slices: the 1961-1999 period in a 15 

simulation of 20th century climate (20c3m in the IPCC nomenclature), and the 2046-2065 16 

period in a simulation of 21st century climate using an A2 emission scenario (sresa2 in 17 

the IPCC nomenclature). An ensemble average was computed for models that provided 18 

output from multiple realizations (Table 1). Differences between the two time slices were 19 

computed and then regridded for all models to a common 2º x 2º grid. For comparison 20 

with Tmin and Tmax, monthly output for total cloud cover (clt) were processed in a similar 21 

manner. Below we focus on results for the June-August (JJA) and December-February 22 

(DJF) seasons. 23 
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 1 

3. Results and Discussion  2 

 For most locations, average changes in Tmin across all models were larger than 3 

associated changes in Tmax for both JJA and DJF (Figure 1a,d). Exceptions included the 4 

United States and Western Europe in JJA, and Mexico in DJF. These trends toward a 5 

reduction in the diurnal temperature range (DTR = Tmax – Tmin) are consistent with 6 

previous modeling results [Dai, et al., 2001; Stone and Weaver, 2003], as well as 7 

observed 20th century trends [Easterling, et al., 1997; Vose, et al., 2005]. However, in 8 

most locations, with the exception of Europe where DTR increased, the average 9 

simulated changes in JJA DTR were small and not consistent across models (Figure 1b). 10 

DTR trends for DJF were consistently negative across models for high latitudes and parts 11 

of Africa and India, but were insignificant elsewhere (Figure 1e). 12 

 The inter-model standard deviations of Tmin changes, used here to quantify 13 

climate change uncertainty for a prescribed emission scenario, were significantly smaller 14 

than the standard deviation of Tmax in many locations. For example, throughout much of 15 

North America and Eurasia, Tmax changes for JJA were 50% or more variable between 16 

models than changes in Tmin (Figure 1 c). The large variability of projected Tmax changes 17 

relative to Tmin is similar to the observation by Alfaro et al. [2006] that the inter-annual 18 

standard deviation for JJA Tmax over central and western United States was 30% larger 19 

than for Tmin. 20 

Consistent with the hypothesis that projected Tmax changes are sensitive to cloud 21 

cover and downwelling radiation, the greatest disparity between Tmax and Tmin uncertainty 22 

was mainly observed during the local summer season (JJA in northern latitudes and DJF 23 
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in southern latitudes) when downwelling solar radiation was greatest. To further evaluate 1 

the mechanism behind increased Tmax uncertainty, we computed the correlation across 2 

models between projected changes in Tmin or Tmax and total cloud cover (Figure 2). 3 

Modeled changes in Tmax were strongly and negatively correlated with changes in clt for 4 

most locations in JJA and in southern latitudes and U.S. in DJF, reflecting the cooling 5 

influence of increased clouds and reduced surface downwelling solar radiation on 6 

daytime temperature. Correlations between clt and Tmin were comparatively smaller, 7 

illustrating that uncertainty in cloud cover changes generally have less of an impact on 8 

Tmin than Tmax. 9 

However, in Northern Hemisphere boreal latitudes in DJF, Tmin and Tmax changes 10 

were positively correlated with cloud changes, and Tmin projections were more variable 11 

across models than Tmax. This results from the small downwelling solar fluxes at high 12 

latitudes in DJF; the absolute sensitivity of these fluxes to cloud cover is therefore small 13 

as well. The insulating effect of clouds, which tends to warm surface temperatures by 14 

trapping infrared radiation, therefore becomes more important and gives rise to a positive 15 

relationship between cloud cover and temperature changes.  16 

In general, therefore, average changes in Tmax across all models were slightly 17 

smaller than changes in Tmin in both seasons, but the uncertainty for projected Tmax 18 

changes was significantly larger than Tmin uncertainty for most locations in both seasons 19 

(with the exception of northern high latitudes in DJF). The inter-model standard 20 

deviations of Tmin and Tmax were also compared with those of Tavg (Figure 3), because 21 

projected changes in Tavg are often more readily available than Tmin and Tmax [e.g., 22 

Cubasch, et al., 2001]. Standard deviations of Tmax averaged ~20% higher than standard 23 
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deviations for Tavg in summer months, while uncertainty for Tmin was roughly 10% lower 1 

than for Tavg.  2 

In DJF, Tmin uncertainty above 40º N was ~10% higher than Tavg uncertainty, 3 

while Tmax uncertainty was slightly lower than Tavg. Interestingly, in some situations 4 

uncertainties for Tmin and Tmax were both larger than for Tavg (0-20º S in JJA and 20-40º 5 

N in DJF). This result reflects the fact that modeled changes in Tmax and Tmin exhibited 6 

negative correlations in these regions, with the largest projected increases in Tmax tending 7 

to come from the same models with the smallest projected increases in Tmin. 8 

As mentioned above, agricultural impacts are one case where differences between 9 

Tmin and Tmax changes may be important, because many biological processes are 10 

differentially sensitive to daytime and nighttime conditions. Spatial averages for Tmin, 11 

Tmax, and Tavg changes in major agricultural regions for JJA were computed to more 12 

directly assess uncertainties relevant to agriculture (Table 2). In contrast to the 13 

predominant global pattern, average changes in DTR were positive for several regions 14 

and significantly negative only in India, where all 12 models projected a DTR decrease 15 

with an average change of -0.5ºC.  16 

Consistent with global patterns, uncertainty in Tmax was larger than for Tmin for 17 

most regions. For example, the inter-model range for Tmax changes was 1.1 ºC larger than 18 

Tmin in the U.S. Corn Belt and California, despite the fact that average changes in Tmax 19 

and Tmin were similar. Previous work has demonstrated that Tmax changes are more 20 

important than Tmin for U.S. maize yields, as water stress and development rates are both 21 

more sensitive to Tmax [Dhakhwa, et al., 1997; Dhakhwa and Campbell, 1998; Schlenker 22 

and Roberts, 2006]. Studies of climate change impacts on U.S. agriculture may therefore 23 
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underestimate uncertainties if using only projected changes in average temperatures. 1 

Uncertainties for Tmin and Tmax were more similar in regions such as Europe and China, 2 

and therefore use of Tavg in these regions may be less problematic.  3 

 4 

4. Conclusions 5 

 Analysis of simulated responses to increased greenhouse gases in 12 global 6 

climate models reveals that projected changes in Tmin are generally much more consistent 7 

across models than changes in Tmax. This occurs because Tmin responses are less strongly 8 

influenced by cloud responses, which are a major source of climate sensitivity 9 

uncertainty. The 12 models considered in this study provided an inconsistent view of 10 

future changes in DTR for most regions. Only for northern high latitudes during winter 11 

months did models agree in projecting a negative DTR trend.  12 

The results of this study indicate that changes in summertime daytime 13 

temperatures and associated impacts are currently less predictable than corresponding 14 

changes at nighttime. Studies that assess impacts of climate change using only 15 

projections of average temperatures therefore risk over- or under-estimation of 16 

uncertainties when considering processes that respond differently to day and night 17 

temperatures. Future work to evaluate the performance of each model in simulating past 18 

changes of Tmin, Tmax, and DTR would be useful for further constraining uncertainty in 19 

future projections [e.g., Tebaldi, et al., 2004]. 20 

 21 
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Figure Legends: 1 

 2 

1) (a) Ratio of average projected changes in Tmax for 12 climate models to projected 3 

changes in Tmin for June-August season. (b) Mean projected change in JJA DTR divided 4 

by inter-model standard deviation. Values below -2 or above +2 are statistically 5 

significant (c) Ratio of inter-model standard deviation of Tmax changes to standard 6 

deviation of Tmin changes for June-August season. (d)-(f) same as (a)-(c) except for 7 

December-February season. All changes correspond to the difference between 2046-2065 8 

averages in an A2 simulation and 1961-1999 averages in a 20th century simulation. 9 

 10 

2) Inter-model correlation of projected changes in total cloud cover and changes in (a) 11 

minimum temperatures and (b) maximum temperatures for June-August season. (c)-(d) 12 

same as (a)-(b) except for December-February season. 13 

 14 

3) Zonal means of standard deviation for minimum and maximum temperature changes, 15 

expressed as a fraction of the standard deviation for average temperature changes, for (a) 16 

June-August and (b) December-February. 17 

 18 
 19 

20 
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Table 1. Climate models whose output was used in this study. See PCMDI web site 1 
(http://www-pcmdi.llnl.gov) for more details on individual models. 2 

Model Designation Resolution Originating group(s) # runs* 

GFDL-CM2.0 2.0 × 2.5° GFDL, USA 1, 1 
GFDL-CM2.1 2.0 × 2.5° GFDL, USA 1, 1 

GISS-ER 4.0 × 5.0° GISS, USA 1, 1 

MIROC3.2(medres) T42 CCSR/NIES/FRCGC, Japan 3, 3 

MIUB/ECHO-G T30 MIUB/METRI/MD Germ./Korea 3, 3 

MRI-CGCM2.3.2 T42 MRI, Japan 5, 5 

BCCR-BCM2.0 T63 BCCR, Norway 1, 1 

CCCma-CGCM3.1(T47) T47 CCCma, Canada 5, 3 

CNRM-CM3 T63 CNRM, France 1, 1 

CSIRO-Mk3.0 T63 CSIRO, Australia 3, 1 

ECHAM5/MPI-OM T63 MPI, Germany 2, 1 

bigIPSL-CM4 2.5 × 3.75° IPSL, France 2, 1 

*number of realizations used for the 20th century (before comma) and A2 scenario (after 3 
comma) simulations  4 
 5 
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Table 2. Statistics of projected changes in June-August average daily minimum, maximum, and average temperatures over selected 
agricultural regions. Values are for 2046-2065 under an A2 emission scenario compared to 1961-1999. Statistics refer to mean, 
standard deviation, minimum, and maximum values, and range across the 12 climate models in Table 1. 
 

Region ∆ Tmin ∆ Tmax ∆ Tavg 

Description Latitude 
(ºN) 

Longitude 
(ºE) mean s.d. min max range mean s.d. min max range mean s.d. min max range 

U.S. Corn 
Belt 38-48 -100 – -80 3.0 0.7 2.1 4.5 2.4 3.2 1.0 2.1 5.6 3.5 3.1 0.8 2.2 5.1 2.9 

Europe 45-55 -5 – 25 2.0 0.4 1.5 2.9 1.4 2.3 0.5 1.4 3.0 1.6 2.2 0.5 1.4 2.9 1.5 

India 22-32 68 – 88 2.4 0.5 1.3 3.3 2.0 1.9 0.7 0.7 3.1 2.4 2.1 0.6 1.2 3.2 2.0 
Eastern 
China 20-50 108 – 128 2.1 0.4 1.4 2.8 1.3 2.0 0.4 1.3 2.6 1.3 2.0 0.4 1.4 2.7 1.3 

California 35-40 -123 – -119 2.5 0.4 1.5 2.9 1.4 2.4 0.7 0.8 3.3 2.5 2.4 0.6 1.2 3.0 1.9 
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