Verification Test Suite for Physics Simulation Codes

PDF Version Also Available for Download.

Description

The DOE/NNSA Advanced Simulation & Computing (ASC) Program directs the development, demonstration and deployment of physics simulation codes. The defensible utilization of these codes for high-consequence decisions requires rigorous verification and validation of the simulation software. The physics and engineering codes used at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratory (SNL) are arguably among the most complex utilized in computational science. Verification represents an important aspect of the development, assessment and application of simulation software for physics and engineering. The purpose of this note is to formally document the existing tri-laboratory suite of ... continued below

Physical Description

5 p. (0.1 MB)

Creation Information

Brock, J S; Kamm, J R; Rider, W J; Brandon, S; Woodward, C; Knupp, P et al. December 21, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The DOE/NNSA Advanced Simulation & Computing (ASC) Program directs the development, demonstration and deployment of physics simulation codes. The defensible utilization of these codes for high-consequence decisions requires rigorous verification and validation of the simulation software. The physics and engineering codes used at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratory (SNL) are arguably among the most complex utilized in computational science. Verification represents an important aspect of the development, assessment and application of simulation software for physics and engineering. The purpose of this note is to formally document the existing tri-laboratory suite of verification problems used by LANL, LLNL, and SNL, i.e., the Tri-Lab Verification Test Suite. Verification is often referred to as ensuring that ''the [discrete] equations are solved [numerically] correctly''. More precisely, verification develops evidence of mathematical consistency between continuum partial differential equations (PDEs) and their discrete analogues, and provides an approach by which to estimate discretization errors. There are two variants of verification: (1) code verification, which compares simulation results to known analytical solutions, and (2) calculation verification, which estimates convergence rates and discretization errors without knowledge of a known solution. Together, these verification analyses support defensible verification and validation (V&V) of physics and engineering codes that are used to simulate complex problems that do not possess analytical solutions. Discretization errors (e.g., spatial and temporal errors) are embedded in the numerical solutions of the PDEs that model the relevant governing equations. Quantifying discretization errors, which comprise only a portion of the total numerical simulation error, is possible through code and calculation verification. Code verification computes the absolute value of discretization errors relative to an exact solution of the governing equations. In contrast, calculation verification, which does not utilize a reference solution, combines an assessment of stable self-convergence and exact solution prediction to quantitatively estimate discretization errors. In FY01, representatives of the V&V programs at LANL, LLNL, and SNL identified a set of verification test problems for the Accelerated Strategic Computing Initiative (ASCI) Program. Specifically, a set of code verification test problems that exercise relevant single- and multiple-physics packages was agreed upon. The verification test suite problems can be evaluated in multidimensional geometry and span both smooth and non-smooth behavior.

Physical Description

5 p. (0.1 MB)

Notes

PDF-file: 5 pages; size: 0.1 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-TR-226984
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/898449 | External Link
  • Office of Scientific & Technical Information Report Number: 898449
  • Archival Resource Key: ark:/67531/metadc880711

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 21, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • April 13, 2017, 6:09 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Brock, J S; Kamm, J R; Rider, W J; Brandon, S; Woodward, C; Knupp, P et al. Verification Test Suite for Physics Simulation Codes, report, December 21, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc880711/: accessed September 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.