Impedancemetric Technique for NOx Sensing Using a YSZ-Based Electrochemical Cell

PDF Version Also Available for Download.

Description

An impedancemetric technique for NO{sub x} sensing using a yttria-stabilized zirconia (YSZ) electrochemical cell is reported. The cell consists of a dense YSZ substrate disk with two YSZ/metal-oxide electrodes deposited on the same side. The cell is completely exposed to the test gas (no air reference). The NO{sub x} and O{sub 2} response of the cell were evaluated during constant-frequency operation at frequencies in the range from 1 to 1000 Hz. At 10 Hz, the NO{sub x} response (as measured by phase angle shift) is shown to be linear with concentration over the range from 8-50 ppm, with comparable response ... continued below

Physical Description

PDF-file: 3 pages; size: 67.6 Kbytes

Creation Information

Martin, L P; Woo, L Y & Glass, R S June 14, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An impedancemetric technique for NO{sub x} sensing using a yttria-stabilized zirconia (YSZ) electrochemical cell is reported. The cell consists of a dense YSZ substrate disk with two YSZ/metal-oxide electrodes deposited on the same side. The cell is completely exposed to the test gas (no air reference). The NO{sub x} and O{sub 2} response of the cell were evaluated during constant-frequency operation at frequencies in the range from 1 to 1000 Hz. At 10 Hz, the NO{sub x} response (as measured by phase angle shift) is shown to be linear with concentration over the range from 8-50 ppm, with comparable response to both NO and NO{sub 2}. A method of operation is described which enables compensation for the O{sub 2} response at oxygen concentrations greater than approximately 4%. This mode of operation allows the sensor to provide sub-10 ppm detection of NO{sub x} irrespective of the O{sub 2} concentration. The sensor exhibits good stability during continuous operation for more than 150 hr. It was observed that the O{sub 2} response of the cell is too slow to be of practical use, taking several minutes to equilibrate after changing the concentration by a few percent. However, data will be presented which demonstrate that this response is related to the metal oxide used for the electrode; and more rapid response times can be achieved by modification of the electrode material.

Physical Description

PDF-file: 3 pages; size: 67.6 Kbytes

Source

  • Presented at: Materials Research Society Meeting, Boston, MA, United States, Nov 27 - Dec 01, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-222247
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 896579
  • Archival Resource Key: ark:/67531/metadc880657

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 14, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 29, 2016, 2:24 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Martin, L P; Woo, L Y & Glass, R S. Impedancemetric Technique for NOx Sensing Using a YSZ-Based Electrochemical Cell, article, June 14, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc880657/: accessed November 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.