Thermodynamic Modeling of the Chemical Composition of Calcine at the Idaho Nuclear Technology and Engineering Center

PDF Version Also Available for Download.

Description

To send calcine produced at Idaho National Engineering and Environmental Laboratory to the Yucca Mountain Project for disposal, characterization information will be required. To sample calcine from its existing storage location would require extensive personnel exposure. Sufficient analyses of the chemical composition of the calcine would be extremely difficult and very expensive. In support of characterization development, the chemical composition of calcine from Bin 3 of Calcine Solid Storage Facility II was thermodynamic modeled. This calcine was produced in the Waste Calcination Facility during its second processing campaign, operating with indirect heating at 400 C and 0.744 bar (0.734 atm) ... continued below

Creation Information

Frazee, C. M. & Christian, J. D. February 1, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

To send calcine produced at Idaho National Engineering and Environmental Laboratory to the Yucca Mountain Project for disposal, characterization information will be required. To sample calcine from its existing storage location would require extensive personnel exposure. Sufficient analyses of the chemical composition of the calcine would be extremely difficult and very expensive. In support of characterization development, the chemical composition of calcine from Bin 3 of Calcine Solid Storage Facility II was thermodynamic modeled. This calcine was produced in the Waste Calcination Facility during its second processing campaign, operating with indirect heating at 400 C and 0.744 bar (0.734 atm) during processing of aluminum high-level liquid waste (first cycle extraction raffinate from reprocessing aluminum-clad fuels) from tanks WM-180 and -182 from December 27, 1966 through August 26, 1967. The current modeling effort documents the input compositional data (liquid feed and calciner off-gas) for Batches 300 - 620 and a methodology for estimating the calcine chemical composition. The results, along with assumptions and limitations of the thermodynamic calculations, will serve as a basis for benchmarking subsequent calculations. This will be done by comparing the predictions against extensive analytical results that are currently being obtained on representative samples of the modeled calcine. A commercial free-energy minimization program and database, HSC 5.1, was used to perform the thermodynamic calculations. Currently available experimental data and process information on the calcine were used to make judgments about specific phases and compounds to include and eliminate in the thermodynamic calculations. Some off-gas species were eliminated based on kinetics restrictions evidenced by experimental data and other estimates, and some calcine components and off-gas compounds were eliminated as improbable species (unreliable thermodynamic data). The current Yucca Mountain Project level of concern is 0.1 wt % of individual cations in the waste package. Chemical composition of the individual calcine components was calculated down to 0.02 mol % and 0.09 wt % of metal components of the calcine. The results reproduce closely existing experimental information on calcine chemical and phase composition. This paper discusses specific conditions accepted for the final calculations. The major calcine components, exceeding 0.15 mol % and 0.65 wt %, are: amorphous Al2O3 (85.30 mol %, 81.20 wt %); amorphous NaNO3 (8.23 mol %, 6.53 wt %); dolomite – CaMg 0.9235 (CO3)1.9235 (1.66 mol %, 2.75 wt %); amorphous HgO (0.99 mol %, 2.00 wt %); CaSO4 (0.64 mol %, 0.82 wt %); amorphous KNO3 (0.63 mol %, 0.59 wt %); amorphous Al4B2O9 (0.54 mol %, 1.37 wt %); and amorphous Al18B4O33 (0.16 mol %, 1.57 wt %). Na is present 99.8 % as NaNO3, 99.9 % of K is present as KNO3, and 53 % NOx is NO2(g), showing that the kinetics limiting effects have been empirically accounted for in the modeling. Approximately 87 % of the mercury is in calcine.

Source

  • Waste Management 2004,Tucson, AZ,02/29/2004,03/04/2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ICP/CON-03-00100
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 910798
  • Archival Resource Key: ark:/67531/metadc880643

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 2004

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 7:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Frazee, C. M. & Christian, J. D. Thermodynamic Modeling of the Chemical Composition of Calcine at the Idaho Nuclear Technology and Engineering Center, article, February 1, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc880643/: accessed December 10, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.