Integrated Experimental and Modeling Studies to Predict the Impact Response of Explosives and Propellants

PDF Version Also Available for Download.

Description

Understanding and predicting the impact response of explosives and propellants remains a challenging area in the energetic materials field. Efforts are underway at LLNL (and other laboratories) to apply modern diagnostic tools and computational analysis to move beyond the current level of imprecise approximations towards a predictive approach more closely based on fundamental understanding of the relevant mechanisms. In this paper we will discuss a set of underlying mechanisms that govern the impact response of explosives and propellants: (a) mechanical insult (impact) leading to material damage and/or direct ignition; (b) ignition leading to flame spreading; (c) combustion being driven by ... continued below

Physical Description

PDF-file: 11 pages; size: 3.2 Mbytes

Creation Information

Maienschein, J L; Nichols III, A L; Reaugh, J E; McClelland, M E & Hsu, P C May 25, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Understanding and predicting the impact response of explosives and propellants remains a challenging area in the energetic materials field. Efforts are underway at LLNL (and other laboratories) to apply modern diagnostic tools and computational analysis to move beyond the current level of imprecise approximations towards a predictive approach more closely based on fundamental understanding of the relevant mechanisms. In this paper we will discuss a set of underlying mechanisms that govern the impact response of explosives and propellants: (a) mechanical insult (impact) leading to material damage and/or direct ignition; (b) ignition leading to flame spreading; (c) combustion being driven by flame spreading, perhaps in damaged materials; (d) combustion causing further material damage; (e) combustion leading to pressure build-up or relief; (f) pressure changes driving the rates of combustion and flame spread; (g) pressure buildup leading to structural response and damage, which causes many of the physical hazards. We will briefly discuss our approach to modeling up these mechanistic steps using ALE 3D, the LLNL hydrodynamic code with fully coupled chemistry, heat flow, mass transfer, and slow mechanical motion as well as hydrodynamic processes. We will identify the necessary material properties needed for our models, and will discuss our experimental efforts to characterize these properties and the overall mechanistic steps, in order to develop and parameterize the models in ALE 3D and to develop a qualitative understanding of impact response.

Physical Description

PDF-file: 11 pages; size: 3.2 Mbytes

Source

  • Presented at: JANNAF 22nd Propulsion Systems Hazards Subcommittee Meeting, Charleston, SC, United States, Jun 13 - Jun 17, 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-212534
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 877822
  • Archival Resource Key: ark:/67531/metadc880627

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 25, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 9, 2016, 10:16 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Maienschein, J L; Nichols III, A L; Reaugh, J E; McClelland, M E & Hsu, P C. Integrated Experimental and Modeling Studies to Predict the Impact Response of Explosives and Propellants, article, May 25, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc880627/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.