Density distribution for a polymer absorbed at an oil-waterinterface

PDF Version Also Available for Download.

Description

The interaction between a polymer segment and an oil-water interface is represented by an asymmetric square-well potential where the well-depth on one side reflects water-polymer and the well depth on the other side reflects oil-polymer interactions. The polymer is represented by a Gaussian chain. The polymer's density distribution is calculated along a coordinate perpendicular to the interface. Results are obtained as a function of the well width, the well depth and its asymmetry and, most important, the polymer's length. For a symmetric well, the distribution shows a strong maximum at the interface provided that the polymer is sufficiently long. For ... continued below

Creation Information

Cai, Jun & Prausnitz, John M. October 30, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The interaction between a polymer segment and an oil-water interface is represented by an asymmetric square-well potential where the well-depth on one side reflects water-polymer and the well depth on the other side reflects oil-polymer interactions. The polymer is represented by a Gaussian chain. The polymer's density distribution is calculated along a coordinate perpendicular to the interface. Results are obtained as a function of the well width, the well depth and its asymmetry and, most important, the polymer's length. For a symmetric well, the distribution shows a strong maximum at the interface provided that the polymer is sufficiently long. For an asymmetric well, the polymer is also strongly adsorbed at the interface provided that the polymer is sufficiently long and provided that the larger well-depth does not exceed a critical value that depends on the smaller well-depth. The calculations are in substantial agreement with experimental results that indicate nearly irreversible adsorption of long-chain molecules at an oil-water interface.

Subjects

Source

  • Journal Name: Journal of Chemical Physics; Journal Volume: 118; Journal Issue: 21; Related Information: Journal Publication Date: 06/01/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--51676
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 918802
  • Archival Resource Key: ark:/67531/metadc880611

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 30, 2002

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 29, 2016, 2:14 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cai, Jun & Prausnitz, John M. Density distribution for a polymer absorbed at an oil-waterinterface, article, October 30, 2002; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc880611/: accessed August 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.