Mapping Strain in Nanocrystalline Nitinol: an X-ray Diffraction Method (SULI paper)

PDF Version Also Available for Download.

Description

Understanding the mechanical properties of biomedical devices is critical in predicting and preventing their failure in the body. Such knowledge is essential, for example, in the design of biomedical stents, which must undergo repeated strain over their ten year lifetimes without breaking. Computational models are used to predict mechanical response of a device, but these models are not complete; there are significant deviations from the predictions, especially when devices are subjected to repeated multi-axial loads. Improving these models requires comparisons with actual measurements of strained nitinol. Local measurements of the full strain tensor can be made using X-ray diffraction techniques, ... continued below

Physical Description

15 pages

Creation Information

Bibee, Mathew & /SLAC, SSRL January 4, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Understanding the mechanical properties of biomedical devices is critical in predicting and preventing their failure in the body. Such knowledge is essential, for example, in the design of biomedical stents, which must undergo repeated strain over their ten year lifetimes without breaking. Computational models are used to predict mechanical response of a device, but these models are not complete; there are significant deviations from the predictions, especially when devices are subjected to repeated multi-axial loads. Improving these models requires comparisons with actual measurements of strained nitinol. Local measurements of the full strain tensor can be made using X-ray diffraction techniques, but they are currently limited to materials whose grain size is larger than the X-ray beam size or require several diffraction patterns produced by rotation of the sample. Nitinol stents are nanocrystalline, with grains smaller than any available X-ray beam. We present a method for measuring the local strain in a nanocrystalline material from a single X-ray diffraction pattern by extending current powder diffraction techniques. The components of the strain tensor are mapped onto a displacement ellipsoid, which is then reconstructed from diffraction data through Bragg's law and least-squares fitting. Using simulated diffraction data, we performed sensitivity tests to examine how the accuracy of the method depends on how much of the diffraction pattern is measured. We found that strain can be accurately calculated from measurements of at least three diffraction arcs of at least 20{sup o} in length. Thus we believe that our method is a viable approach to calculating strain provided a sufficient amount of diffraction pattern is recorded.

Physical Description

15 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SLAC-TN-05-061
  • Grant Number: AC02-76SF00515
  • DOI: 10.2172/877996 | External Link
  • Office of Scientific & Technical Information Report Number: 877996
  • Archival Resource Key: ark:/67531/metadc880482

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 4, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 29, 2016, 7:27 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bibee, Mathew & /SLAC, SSRL. Mapping Strain in Nanocrystalline Nitinol: an X-ray Diffraction Method (SULI paper), report, January 4, 2006; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc880482/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.