A Review of the Properties of Nb3Sn and Their Variation with A15Composition, Morphology and Strain State

PDF Version Also Available for Download.

Description

Significant efforts can be found throughout the literature to optimize the current carrying capacity of Nb{sub 3}Sn superconducting wires. The achievable transport current density in wires depends on the A15 composition, morphology and strain state. The A15 sections in wires contain, due to compositional inhomogeneities resulting from solid state diffusion A15 formation reactions, a distribution of superconducting properties. The A15 grain size can be different from wire to wire and is also not necessarily homogeneous across the A15 regions. Strain is always present in composite wires, and the strain state changes as a result of thermal contraction differences and Lorentz ... continued below

Creation Information

Godeke, Arno March 27, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Significant efforts can be found throughout the literature to optimize the current carrying capacity of Nb{sub 3}Sn superconducting wires. The achievable transport current density in wires depends on the A15 composition, morphology and strain state. The A15 sections in wires contain, due to compositional inhomogeneities resulting from solid state diffusion A15 formation reactions, a distribution of superconducting properties. The A15 grain size can be different from wire to wire and is also not necessarily homogeneous across the A15 regions. Strain is always present in composite wires, and the strain state changes as a result of thermal contraction differences and Lorentz forces in magnet systems. To optimize the transport properties it is thus required to identify how composition, grain size and strain state influence the superconducting properties. This is not accurately possible in inhomogeneous and spatially complex systems such as wires. This article therefore gives an overview of the available literature on simplified, well defined(quasi--)homogeneous laboratory samples. After more than 50 years of research on superconductivity in Nb{sub 3}Sn, a significant amount of results are available, but these are scattered over a multitude of publications. Two reviews exist on the basic properties of A15 materials in general, but no specific review for Nb{sub 3}Sn is available. This article is intended to provide such an overview. It starts with a basic description of the Niobium--Tin intermetallic. After this it maps the influence of Sn content on the electron--phonon interaction strength and on the field-temperature phase boundary. The literature on the influence of Cu, Ti and Ta additions will then be briefly summarized.This is followed by a review on the effects of grain size and strain. The article is concluded with a summary of the main results.

Source

  • Journal Name: Superconductor, Science and Technology; Journal Volume: 19; Related Information: Journal Publication Date: 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--59936
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 898943
  • Archival Resource Key: ark:/67531/metadc880325

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 27, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 30, 2016, 2:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Godeke, Arno. A Review of the Properties of Nb3Sn and Their Variation with A15Composition, Morphology and Strain State, article, March 27, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc880325/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.