CFD Analysis for Flow Behavior Characteristics in the Upper Plenum during low flow/low pressure transients for the Gas Cooled Fast Reactor (GCFR)

PDF Version Also Available for Download.

Description

Gas coolant at low pressure exhibits poor heat transfer characteristics. This is an area of concern for the passive response targeted by the Generation IV GCFR design. For the first 24 hour period, the decay heat removal for the GCFR design is dependent on an actively powered blower, which also would reduce the temperature in the fuel during transients, before depending on the passive operation. Natural circulation cooling initiates when the blower is stopped for the final phase of the decay heat removal, as under forced convection the core decay heat is adequately cooled by the running blower. The ability ... continued below

Creation Information

Sabharwall, Piyush; Marshall, Theron; Weaver, Kevan & Gougar, Hans May 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Gas coolant at low pressure exhibits poor heat transfer characteristics. This is an area of concern for the passive response targeted by the Generation IV GCFR design. For the first 24 hour period, the decay heat removal for the GCFR design is dependent on an actively powered blower, which also would reduce the temperature in the fuel during transients, before depending on the passive operation. Natural circulation cooling initiates when the blower is stopped for the final phase of the decay heat removal, as under forced convection the core decay heat is adequately cooled by the running blower. The ability of the coolant to flow in the reverse direction or having recirculation, when the blowers are off, necessitates more understanding of the flow behavior characteristics in the upper plenum. The work done here focuses primarily on the period after the blower has been turned off, as the core is adequately cooled when the blowers are running, thus there was no need to carry out the analysis for the first 24 hours. In order to understand the plume behavior for the GCFR upper plenum several cases were run, with air, helium and helium-air mixture. For each case, the FLUENT was used to characterize the steady state velocity vectors and corresponding temperature in the upper plenum under passive decay heat removal conditions. This study will provide better insight into the plume interaction in the upper plenum at low flow and low pressure conditions.

Source

  • ICAPP 2007 2007 International Congress on Advances in Nuclear Power Plants,Nice, France,05/13/2007,05/18/2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-07-12337
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 912442
  • Archival Resource Key: ark:/67531/metadc880290

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 5:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sabharwall, Piyush; Marshall, Theron; Weaver, Kevan & Gougar, Hans. CFD Analysis for Flow Behavior Characteristics in the Upper Plenum during low flow/low pressure transients for the Gas Cooled Fast Reactor (GCFR), article, May 1, 2007; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc880290/: accessed November 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.