In situ chemical fixation of arsenic-contaminated soils: Anexperimental study

PDF Version Also Available for Download.

Description

This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a ... continued below

Creation Information

Yang, Li; Donahoe, Rona J. & Redwine, James C. March 27, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 40 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching procedure (TCLP) and EPA Method 1312 [USEPA.Method 1312:synthetic precipitation leaching procedure. Test methods for evaluatingsolid waste, physical/chemical methods. 3rd ed. Washington, DC: U.S.Environmental Protection Agency, Office of Solid Waste. U.S. GovernmentPrinting Office; 1994]synthetic precipitation leaching procedure(SPLP).Both FW and BH soils showed significant decreases in arsenicleachability for all three treatment solutions, compared to untreatedsoil. While soils treated with solution (3) showed the best results withsubsequent TCLP sequential leaching, SPLP sequential leaching of treatedsoils indicated that lowest arsenic mobility was obtained using treatmentsolution (1). Treatment solution (1) with only FeSO4 is considered thebest choice for remediation of arsenic-contaminated soil because SPLPsequential leaching better simulates natural weathering. Analysis oftreated soils produced no evidence of newly-formed arsenic-bearing phasesin either soil after treatment. Sequential chemical extractions oftreated soils indicate that surface complexation of arsenic on ferrichydroxide is the major mechanism for the fixation process.

Source

  • Journal Name: Science of the Total Environment; Journal Volume: 387; Journal Issue: 1-3; Related Information: Journal Publication Date: 15 November2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--63522
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1016/j.scitotenv.2007.06.024 | External Link
  • Office of Scientific & Technical Information Report Number: 918683
  • Archival Resource Key: ark:/67531/metadc880169

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 27, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Oct. 31, 2016, 3:51 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 40

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Yang, Li; Donahoe, Rona J. & Redwine, James C. In situ chemical fixation of arsenic-contaminated soils: Anexperimental study, article, March 27, 2007; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc880169/: accessed October 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.