Final Report: Developing Liquid Protection Schemes for Fusion Energy Reactor First Walls

PDF Version Also Available for Download.

Description

Over the last year, the Georgia Tech group has experimentally studied vertical turbulent sheets of water issuing downwards into atmospheric pressure air at Reynolds numbers Re = U{sub 0}{delta}/{nu} = 53,000 and 120,000 and Weber numbers We = {rho}U{sub o} {sup 2}{delta}/{sigma} = 2,900 and 18,000, respectively. Here, U{sub o} is the average jet speed, {delta} is the jet thickness (short dimension) at the nozzle exit ({delta} = 1 cm), and {nu}, {rho} and {sigma} are the kinematic viscosity and density of water and the surface tension at the air-water interface, respectively. These Re and We values are about 50% ... continued below

Physical Description

258 KB

Creation Information

Abdel-Khalik, Minami Yoda Said I. March 29, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Over the last year, the Georgia Tech group has experimentally studied vertical turbulent sheets of water issuing downwards into atmospheric pressure air at Reynolds numbers Re = U{sub 0}{delta}/{nu} = 53,000 and 120,000 and Weber numbers We = {rho}U{sub o} {sup 2}{delta}/{sigma} = 2,900 and 18,000, respectively. Here, U{sub o} is the average jet speed, {delta} is the jet thickness (short dimension) at the nozzle exit ({delta} = 1 cm), and {nu}, {rho} and {sigma} are the kinematic viscosity and density of water and the surface tension at the air-water interface, respectively. These Re and We values are about 50% and 20% of the prototypical values for HYLIFE-II, respectively. In this report, the flow coordinate system is defined so that the origin is at the center of the nozzle exit, with the x-axis along the flow direction, the y-axis along the long dimension of the nozzle, and the z-axis along the short dimension of the nozzle (cf. Fig. 1). During the final year of this project, we have made three contributions in the area of thermal-hydraulics of thick liquid protection, namely: (1) Experimentally demonstrated that removing as little as 1% of the total mass flux using boundary-layer (BL) cutting can reduce the number density of the drops due to turbulent breakup of the liquid sheet below the maximum background density levels recommended for HYLIFE-II of 5 x 10{sup -19} m{sup 3}; (2) Shown that a well-designed flow conditioning section upstream of the nozzle can greatly reduce surface ripple, and that boundary-layer cutting can be used in conjunction with well-designed flow conditioning to further reduce surface ripple below the 0.07{delta} beam-to-jet standoff proposed for HYLIFE-II; and (3) Quantified how different flow conditioner designs affect the rms fluctuations of the streamwise (x) and transverse (z) velocity components in the nozzle itself (i.e., upstream of the nozzle exit) and affect surface ripple in the near-field of the flow, or x {le} 25{delta}. The rest of this section details these conclusions. In all cases, further details of this work can be found in the doctoral dissertation by Durbin.

Physical Description

258 KB

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FG02-98ER54499
  • DOI: 10.2172/878171 | External Link
  • Office of Scientific & Technical Information Report Number: 878171
  • Archival Resource Key: ark:/67531/metadc880142

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 29, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 4, 2016, 5:44 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Abdel-Khalik, Minami Yoda Said I. Final Report: Developing Liquid Protection Schemes for Fusion Energy Reactor First Walls, report, March 29, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc880142/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.