Tas

ENERGY AND INTENSITY CALIBRATION STANDARDS

Sag.

by

R. B. Firestone

DISTRIBUTION OF THIS DOCUMENT UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOTICE-

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

INTRODUCTION

The following table of energy and intensity standards includes isotopes with a proven track record at this laboratory and elsewhere, as well as isotopes which offer the possibility of future application. Data is also included for some of those trespassing isotopes which appear in the background or as common impurities in experiments, and which might be useful for calibration. It is likely that other isotopes not reported here can be useful, and some of those mentioned may have only special application due to half-life or other considerations.

Energy and intensity values presented in this table are chosen by various critereon. Energies measured by bent crystal spectrometer were usually given stronger consideration, although certain Ge(Li) work (e.g. Idaho Falls) was given great weight. No effort is made to average different values, and given error estimates were weighted strongly in choosing energies. Efficiency data is much more difficult to judge, and it was usually considered most feasible to choose all values from one author. Given errors were not used as a strong critereon, in general, because it is questionable whether these errors contain more than statistical fluctuations. In addition many authors clearly miscalculated their errors. The track record of certain groups was given added weight (e.g. Livermore) as was the date the work was completed (more recent work is favored). Additional references are provided for those who wish to follow up the available measurements on a given isotope, but no attempt at completeness is made, and older work is MASTER

istrigunda of this dogument unlimited y

generally referenced in Lederer's Table of the Isotopes, 6th Ed., (Led68).

An index of γ -ray standards is supplied to provide quick reference to the isotopes in this table. Half-lives and suggested means of production are presented, as well as the energy range covered by the isotope. The standard is delineated into general categories as to whether it contains primary or secondary quality measurements, and the numbers of each. Primary energy standards have high accuracy and are usually better than 0.01 keV at low energies and 0.05 keV at higher energies. Secondary energy standards are slightly less accurate, but are usually better than 0.10 keV. Primary intensity standards were measured by painstaking methods or involved simple decay systematics which lead to very accurate values. Secondary intensity standards were usually measured with the primary standards. The primary and secondary classifications are a bit arbitrary and are used only as a general guideline.

Some of the values in this table will be subject to change as new, better techniques are applied to the measurements. No warrantee is implied to any of the numbers in this table, and the user is advised to be careful in accepting any numbers or errors with less than a jaundiced eye. Standard calibration is a difficult game, and even veteran experimenters may miss a measurement. The author will appreciate updated information for inclusion in this table as well as any corrections or suggestions.

-11-

Index of γ -ray Standards Compiled

				•	· · ·	<u> </u>			
	· · · ·		Ь	Er	ergy	Range	(keV) Stand	ard ^C Quality
:	Isotope		Production			00		Energy	Efficiency
				0-100	100-50	500-15	>1500		
	⁷ Be	53.28d	(p,n),C		x			P(1)	· .
	16 _N	7.11s	(n,p)				x	P(2)	
	²² Na	2.601y	с			x		P(1)	
	²⁴ Na	15.02h	(n,γ),C			x	x	P(2)	P(2)
	28 _{Al}	2.240m	(n,y)				x	S(1)	
	40K	1.28×10 ⁹ y	N,C			x		S(1)	
	⁴⁶ Sc	83.8d	(n,γ),C			x		P(2)	P(2)
	⁵¹ Cr	27.71d	(p,n)(n,γ),		X			P(1)	
	⁵⁴ Mn	312.5d	C C		x			P(1)	
	⁵⁶ Co	77.3d	(p,n),C			x	x	S(13)	S(13)
	⁵⁷ Co	271d	(p, y),C	x	x			P(3)	P(3)
	⁵⁸ Co	71.3d	(p,γ),C			x		P.(1)	
	⁵⁹ Fe	44.6d	(n,γ),C)			x		P(2)	P(2)
	⁶⁰ Co	5.272y	(n,γ),C			x		P(2)	P(2)
	⁶⁵ Zn	243.7d	(n,ý),C	· .		. X		P(1)	
	³⁷⁶⁶ Ga	9.5h	(p,n)(α,3n)			x	x	S(19)	S(19)
	⁷⁵ Se	120d	(n,γ)(p,2n), C	X	X ·	,		P(9)	S(9)
	⁸² Br	35.4h	(n,y),C			x		P(8)	S(8)
	⁸⁵ Sr	65.2d	(p,n),C		·	x		P(1)	
	⁸⁸ Y	106.6d	(p,n),C			x	x	P(2)	P(2)

(Continued)...

• •					······						
90 <i>m</i> Y	64.0h	(n,γ),C			x				P(2)	P(2)	
⁹⁴ Nb	2.0×10 ⁴ y	(n, y),C				x			P(2)	P(2)	
⁹⁵ Zr	65.5d	(n,y),C	•			x			P(2)	- (2)	
⁹⁵ Nb	35.1d	(β ⁻),C		•		x	-		P(1)		•
^{95m} Tc	61d	(p,n)			x	x			P(5)	S(7)	
⁹⁹ Mo	66.02h	(n,γ),C		Х	x	x			P(5)	S(6)	
108m _{Ag}	1.3×10 ² y	(n,y)			x	x			S(3)	P(3)	
¹⁰⁹ Cd	453d	(p,n),C		X					P(1)		
^{110m} Ag	252d	(n,y),C			x	x	X	c	P(9)	S(15)	•
113 _{Sn}	115d	(p,3n)(n,γ)),		x				P(1)		
¹²⁴ Sb	60.20d	(n,γ),C				x	x	c	P(9)	S(11)	
¹²⁵ Sn	9.65d	(n, y)			x	x	x		P(3)	S(19)	
¹³² Cs	6.47d	(p,n)			x	x			P(1)	S(8)	
¹³³ Ba	10.4y	С		x	х				P(5)	S(5)	
¹³⁴ Cs	2.06y	(n,γ),C			х	x				S(9)	
137 _{Cs}	30.1	С				x			P(1)		
¹³⁹ Ce	137.5d	(p,n),C		,	x				P(1)		
¹⁴¹ Ce	32.53d	(n, y),C			х				P(1)		
152 _{Eu}	12y	(n,y),C			x	x			P(12)	S(12)	
¹⁵³ Gd	241.5d	C	.	x	x				P(6)	S(9)	
¹⁵⁴ Eu	8.6y	(n, y),C			х	X			P(11)	S(13)	
155 _{Eu}	4.8y	С		x	X				P(5)	S(4)	
¹⁶⁰ Tb	72.3d	(n,γ),C		x	x	x			P(12)	S(14)	, •
^{166m} Ho	1.2×10 ³ y	(n, y),C		x	X	x			S(22)	S(24)	
¹⁶⁹ Yb	31d	(p,n),C		x	x				P(2)	S(11)	•
170 _{Tm}	129d	(n,γ), C		x					P(1)	· ·	
177m _{Lu}	161.0a	(n, y)		x	x			ļ	S(30)	S(32)	
				. !			1	1			

(Continued)...

-2-

· · ·				1.				
¹⁸² Ta	115d	(n, y),C	x	x	x		P(30)	S(24)
¹⁸³ Ta	5.0d	С	x	x			P(12)	S(12)
¹⁸⁵ 0s	84d	(p,n)			x		P(5)	S(5)
¹⁹¹ 0s	15.3d	(n,γ),C	x	X			P(2)	
¹⁹² Ir	74.3d	(n,γ),C		x	x		P(9)	S(11)
. 198 _{Au}	2.695d	(n,y),C		x	x		P(3)	S(3)
203 _{Hg}	46.60g	(n, y),C		x - 2			P(1)	
207 _{Bi}	38y	С		x	. X	X	P(3)	S(3)
226 _{Ra}	1.6×10 ² y	С	x	x	x	x	S(23)	S(23)
²²⁸ Th	1.913y	С		х	X	X	P(3)	S(3)
241 _{Am}	435y	С	X	· ·			P(2)	S(2)
²⁴³ Cm	28y	С	x	х				S(4)

a) Chart of Nuclides, Knolls Atomic Power Laboratory, 11th Ed., 1972.

b) Mode(s) of production, C = commercially available, N = naturally abundant.

c) P = primary standard (extreme accuracy); S = secondary standard.

Number of useful transitions are given in parenthesis.

-3-

Isotope Energy Intensity References ⁷Be 477.59 ± 0.01 1. He71 16_N 6129.96 ± 0.46 1. Ch67 7117.02 ± 0.49 22_{Na} 1274.52 ± 0.03^{1} 1. He71 2. Wh67 3. Leg68 4. Ram67 5. Ja71 ²⁴Na 1368.60 ± 0.03^2 100.01 1. Ja71 2754.10 ± 0.18^{1} 100.01 2. Gr73

 γ -Ray Energy and Intensity Standards

28_{Al}

1778.70 ± 0.17

1. Wh67

•

	T	T	· · ·
40K	1460.85 ± 0.10		1. ND13
•			
⁴⁶ Sc	889.25 ± 0.02^{1}	100.0 ²	1. He71
· · .	1120.52 ± 0.03^{1}	100.0 ²	2. ND13
			3. Ga72
⁵¹ Cr	320.078 ± 0.008^{1}		1. Gr70
			2. Wh67
			3. Leg68
⁵⁴ Mn	834.82 ± 0.02^{1}		1. He71
			2. Ram67
			3. Leg68
			4. Ja71
•	м. Ала		
		<u> </u>	

n An an an Anna An an Anna an A

	Energy	Intensity	
⁵⁶ Co	263.40 ± 0.10^{1} ²	22 ± 4^{1}	1. Ca71
	411.37 ± 0.08^{1} , ²	25 ± 5^{1}	2. Ge71
•	486.53 ± 0.11 ¹ , ²	55 ± 5^{1}	3. Ch67
•	733.70 $\pm 0.15^{1}, ^{2}$	200 ± 10^{1}	4. Gu68
	787.86 ± 0.07^{1} , ²	310 ± 10^{1}	5. Phe70
	846.74 ± 0.03^2	100000 ¹	
	896.55 ± 0.20 ¹ , ²	70 ± 5^{1}	
	977.46 ± 0.06 ¹ , ²	1440 ± 15^{1}	· .
	997.30 ± 0.16 ¹ , ²	112 ± 6^{1}	
	1037.84 ± 0.05^2	14000 ± 100^{1}	
	$1089.00 \pm 0.24^{1}, 2$	50 ± 10^{1}	• :
	$1140.25 \pm 0.10^{1}, 2$	150 ± 10^{1}	
	1160.05 $\pm 0.16^{1},^{2}$	100 ± 10^{1}	
	$1175.13 \pm 0.08^{1},^{2}$	2280 ± 20^{1}	
	$1198.75 \pm 0.20^{1},^{2}$	50 ± 10^{1}	· · ·
	$1238.28 \pm 0.04^{1},^{2}$	67600 ± 400^{1}	
	$1272.15 \pm 0.60^{1},^{2}$	20 ± 2^{1}	· · · · · · · · · · · · · · · · · · ·
	$1335.53 \pm 0.08^{1},^{2}$	125 ± 5^{1}	
	1360.26 ± 0.04^2	4330 ± 40^{1}	
	$1442.71 \pm 0.08^{1},^{2}$	200 ± 10^{1}	
	1462.30 ± 0.12 ¹ , ²	77 ± 5^1	· .
	1640.50 ± 0.13 ¹ , ²	60 ± 10^{1}	• .
	$1771.49 \pm 0.06^{1},^{2}$	15700 ± 150 ¹	
	$1810.40 \pm 0.50^{1},^{2}$	640 ± 10^{1}	

Ene	rgy	Intensity
1963.94	± 0.06 ¹ ,	2720 ± 15^{1}
2015.36	± 0.05 ¹ ,	2 3080 ± 30 ¹
2034.92	± 0.06 ¹ ,	2 7890 ± 70 ¹
2113.80	± 0.15 ¹ ,	2 385 ± 5 ¹
2213.10	± 0.15 ¹ ,	2 350 ± 10 ¹
2276.30	± 0.16 ^{1,2}	2 110 ± 5 ¹
2373.65	$\pm 0.40^{1}$	2^{2} 80 ± 10 ¹
2523.80	± 0.20 ^{1,2}	60 ± 5^{11}
2598.53	$\pm 0.06^2$	16900 ± 150^{1}
3010.20	$\pm 0.23^{1,2}$	1000 ± 10^{1}
3202.30	± 0.16 ^{1,2}	3040 ± 30^{1}
3253.60	± 0.16 ^{1,2}	7410 ± 65^{1}
3273.25	± 0.16 ^{1,2}	1750 ± 20^{1}
3369.60	± 0.30 ^{1,2}	11 ± 2^{1}
3451.55	± 0.20 ¹ ,2	875 ± 10^{1}
3540.05	± 0.20 ¹ ,2	180 ± 5^{1}
3600.60	$\pm 0.40^{1,2}$	16 ± 1^{1}
3611.60	$\pm 0.40^{1,2}$	7 ± 1^1

⁵⁶Co

	·	-5-	* .		
5700	14 408 + 0 005 ¹	11410 + 500 ¹	1. Ko71		
	122.06 ± 0.01^2	1000001	2. Gr70		•
	136.47 ± 0.01^2	13000 ± 400^{1}	3. Ja71	[.]	
					•
⁵⁸ Co	810.75 ± 0.02		1. He71	· · · · · · · · · · · · · · · · · · ·	• •
					· ·.
• · ·		· · · ·			•
⁵⁹ Fe	1099.23 ± 0.03^{1}	0.565 ²	1. He71		· ·
	1291.57 ± 0.03 ¹	0.432 ²	2. ND13	•	
			3. Leg70		
· · ·	· · · · ·			· .	:
		· · · ·		· · ·	
⁶⁰ Co	1173.21 ± 0.03^{1}	99.88 ± 0.02	1. He71		
·	1332.47 ± 0.03^2	100	2. Gr73	· · ·	• [•]
			3. NDA8		-
· · · · ·			4. Wh67		
					•
					н С. н
⁶⁵ Zn	1115.53 $\pm 0.03^{1}$		1. He71	, <i>-</i>	
			2. Ram67		
· · · · · ·			3. Leg68		
			•	 .	
• •					

		· · ·	-6-		
· · ·					
	66 _{Ga}	290.1 \pm 0.1 ¹	140 ± 10^{1}	1. Ca71	
		410.30 ± 0.10^{1}	250 ± 25^{1}	2. Phe70	
		448.90 ± 0.10^{1}	290 ± 10^{1}		· · ·
	•	459.60 ± 0.20^{1}	230 ± 10^{1}		
		578.70 ± 0.10^{1}	160 ± 10^{1}		
•		686.34 ± 0.08^{1}	680 ± 20^{1}		
1		833.65 ± 0.08^{11}	16200 ± 700^{1}		
		853.08 ± 0.08^{1}	200 ± 5^{1}		
	· .	856.70 ± 0.10^{1}	320 ± 10^{1}		
· · ·		981.02 ± 0.10^{1}	140 ± 10^{1}		
· · ·		1009.35 ± 0.14^{1}	150 ± 10^{1}		
4.		1039.35 ± 0.08^{1}	100000 ¹		
		1060.50 ± 0.40^{1}	33 ± 10^{1}		
		1148.05 ± 0.14^{1}	215 ± 15^{1}		
•		1190.44 ± 0.10^{1}	350 ± 10^{1}		· · · ·
		1232.55 ¹	125 ± 30^{1}		
		1232.65 ¹	1385 ± 40^{1}	•	
· · · · · · · · · · · · · · · · · · ·		1333.37 ± 0.09^{1}	3260 ± 30^{1}		
	· ·	1356.45 ¹	980 ± 100^{1}		
		1356.55 ¹	335 ± 45^{1}		
: * . *		1357.07 ¹	465 ± 90^{1}		•
		1418.97 ± 0.09^{1}	1680 ± 20^{1}	•	
		1458.95 ± 0.10^{1}	260 ± 10^{1}		
		1508.37 ± 0.09^{1}	1520 ± 25^{1}		
		1741.8 ± 0.4^{1}	100 ± 10^{1}	•	
		1899.20 ± 0.15^{1}	1130 ± 25^{1}	· · · · ·	
· · · ·	_	······································	-		· · · ·
					. •

•	· · ·			•
· · ·		-7-		
		- F	······	
⁶⁶ Ga	1918.66 ± 0.09^{1}	5650 ± 20^{1}		:
	2066.4 ± 0.4^{1}	90 ± 5^1		
	2174.00 ± 0.15^{1}	260 ± 20^{1}		
	2190.20 ± 0.15^{1}	15050 ± 150^{1}		
	2213.75 ± 0.15^{1}	370 ± 15^{1}		
• •	2292.60 ± 0.15^{1}	110 ± 10^{1}		
• • •	2393.10 ± 0.15^{1}	655 ± 20^{1}		
	2422.50 ± 0.15^{1}	5140 ± 50^{1}		
	2492.50 ± 0.15^{1}	65 ± 10^{1}		
	2589.00 ± 0.15^{1}	75 ± 10^{1}		
	2752.27 ± 0.10^{1}	$61100 + 500^{1}$		
	2780.65 ± 0.15^{1}	335 ± 10^{1}		·
	$2934 \ 38 \pm 0 \ 15^{1}$	535 ± 10^{1}		, 15
	297750 ± 0.40^{1}	60 ± 10^{1}		
	2977.50 ± 0.40^{1}	85 ± 10^{1}		
	2333.20 ± 0.40	35 ± 10		. ·
· · · · · · · · · · · · · · · · · · ·	3047.25 ± 0.20^{1}	100 ± 10		· ·
· .	3229.35 ± 0.20	3920 ± 30^{-1}		
	3256.60 ± 0.20	250 ± 10^{-1}		
	3381.30 ± 0.20^{-1}	$3/30 \pm 30^{-1}$		
	3422.50 ± 0.20^{-1}	2170 ± 40^{2}	· · ·	
	3432.95 ± 0.20^{1}	740 ± 10^{1}		• • • •
• •	3724.80 ± 1.00^{1}	6 ± 1^{1}		
· ·	3736.80 ± 0.60^{1}	32 ± 3^{1}		·
	3767.25 ± 0.25^{1}	365 ± 10^{1}		· · ·
	3791.56 ± 0.10^{1}	2670 ± 30^{1}		
	3806.30 ± 1.00^{1}	6 ± 1^1		
÷	· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••		

		-8-	
66 _{Ga}	3811.70 ± 0.80^{1}	21 ± 2^1	
	3827.50 ± 0.80^{1}	17 ± 2^{1}	
• •	4086.45 ± 0.15^{1}	3020 ± 40^{1}	
	4295.50 ± 0.20^{1}	9180 ± 100^{1}	
	4462.10 ± 0.14^{1}	1870 ± 20^{1}	
	4806.60 ± 0.20^{1}	3860 ± 40^{1}	
75 ₅₆	66.05 ± 0.02^{1}	1.77 ± 0.20	1 0.71
	96.732 ± 0.007^{1}	1.77 ± 0.20^{-1}	1. Ge/1
· .	$121.11 + 0.01^{1}$	28.19 ± 1.40^{1}	2. GI/U
	$136.00 + 0.01^{1}$	98.25 ± 4.6^{1}	5. 11/1
	198.60 ± 0.02^{1}	2.43 ± 0.12^{1}	4. HUN/J
· .	264.65 ± 0.02^{1}	100 ¹	
•	279.53 ± 0.01^{1}	$43.22 + 2.2^{1}$	
	303.90 ± 0.02^{1}	2.31 ± 0.12^{1}	
· · · · · · · · · · · · · · · · · · ·	400.64 ± 0.02^{1}	19.56 ± 1.2^{1}	
⁸² Br	554.33 ± 0.02^{1}	846 ± 9^2	1. Ga72
	619.05 ± 0.02^2	520 ± 7^2	2. Ra70
	698.32 ± 0.02^2	335 ± 5^2	
	776.50 ± 0.03^{1}	1000 ²	
	827.81 ± 0.03^2	292 ± 5^2	·

· · ·

•

•

· ·			
⁸² Br	1043.98 ± 0.03^2	334 ± 5^2	•
	1317.47 ± 0.05^2	330 ± 5^2	· · · · ·
	1474.82 ± 0.08^2	200 ± 4^2	
			·
· ·			
⁸⁵ Sr	514.00 ± 0.02^{1}		1. He71
			2. Leg68
			· · ·
· · ·		•	· . :
· .			
88 _Y	898.02 ± 0.02^{1}	91.4 \pm 0.7 ¹	1. Ja71
	1836.01 ± 0.04^2	99.999 ± 0.001 ¹	2. Gr73
•			3. Wh67
· · · .			4. Leg68
• •			5. Gu68
			6. He71
			7 Ar74
· ·			
	·		
90 <i>m</i> ¥	202.53 ± 0.03	1.072 ± 0.004	1. Han73
· · ·	479.51 ± 0.05	1.000	
· .			
			<u> </u>

. . .

-9-

94 _{ND}	702.62 ± 0.02^{1}	100.0 ²	1. He71
	871.09 ± 0.02^{1}	100.0 ²	2. Led68
⁹⁵ Zr	724.18 ± 0.02^{1}	0 432	1 4071
	756 71 + 0 02	0.45	1. ne/1
	/30./1 ± 0.02-	0.5462	2. ND13
95 _{Nb}	765.78 ± 0.02		1. He71
•			
^{95m} Tc	203.94 ± 0.08^{1}	100	1. Chi69
	252.89 ± 0.15^{1}	1.1 ± 0.1	2. He71
	582.06 ± 0.01^2	55 ± 5	
	786.18 ± 0.02^2	15.0 ± 1.1	
	820.60 ± 0.02^2	8.0 ± 0.8	
	835.13 ± 0.02^2	45.0 ± 4.5	
	1039.24 ± 0.02^2	5.0 ± 0.5	• •
			· · ·
	· ·]		

-10-

·		· · · · · · · · · · · · · · · · · · ·	
⁹⁹ Mo	40.585 ± 0.002^{1}	2.2 $\pm 1^2$	1. Ga72
• •	140.508 ± 0.004^{1}	1002	2. Ei68
	181.063 ± 0.008^{1}	7.5 ± 0.2^2	
•	366.43 ± 0.03^{1}	1.63 ± 0.10^2	
	739.58 ± 0.06^{1}	15.4 ± 0.6^2	
	778.2 $\pm 0.1^2$	5.4 $\pm 0.3^2$	
			· ·
^{108m} Ag	434.00 ± 0.10^{1}	100 ¹	1. Ham71
	614.37 ± 0.10^{1}	99.3 $\pm 2.0^{1}$	2. Das73
	722.95 ± 0.08^{1}	100.4 ± 2.0^{1}	
¹⁰⁹ Cd	88.035 ± 0.006 ¹		1. Rae70
	· · ·		2. Gr70
· ·			
11077.	•		•
110 ^m Ag	446.60 ± 0.20^{1}	3.57 ± 0.71	1. La73a
	620.18 ± 0.10^{1}	2.79 ± 0.06	2. Ga72
	657.75 ± 0.02^2	100.	3. He71
	677.59 ± 0.04 ²	11.93 ± 0.41	4. Phi72
	687.01 ± 0.04 ²	7.25 ± 0.33	
	706.69 $\pm 0.03^2$	17.15 ± 0.85	

-11-

¹¹⁰ <i>m</i> Ag	744.25 ± 0.06^2	4.43 $\pm 0.13^{1}$	1. La73a
	763.91 $\pm 0.03^2$	23.73 ± 0.72^{1}	2. Ga72
	818.03 ± 0.04^2	7.81 \pm 0.39 ¹	3. He71
	884.67 ± 0.03^2	80.28 ± 4.01^{1}	4. Phi72
	937.48 ± 0.04^2	37.31 ± 1.42^{1}	
· · ·	1383.85 ± 0.20	28.26 ± 1.42^{1}	•
	1475.42 ± 0.16	4.44 ± 0.16^{1}	• · ·
	1504.65 ± 0.29	15.19 ± 0.49^{1}	
	1561.92 ± 0.20	1.40 ± 0.09^{1}	• •
	· · · · · ·		• • •
•			
¹¹³ Sn	391.69 ± 0.01^{1}	· · ·	1. Gr70
			2. Gu68
			• . •
¹²⁴ Sb	602.71 ± 0.02^2	100.0 ¹	1. Au69
•	645.85 ± 0.03^2	7.42 ± 0.11^{1}	2. ND13
ν.	709.44 ± 0.10^{1}	1.46 ± 0.15^{1}	3. Gu68
	713.84 ± 0.13^{1}	2.35 \pm 0.17 ¹	4. Wh67
· ·	722.78 ± 0.04^{1}	11.27 ± 0.18^{1}	• .
	968.20 $\pm 0.04^{1}$	1.92 ± 0.06^{1}	
	1045.10 ± 0.04^{1}	1.94 ± 0.09^{1}	
	1325.59 ± 0.06	1.57 ± 0.09	
	1368.21 ± 0.05	2.78 ± 0.14	
		·····	<u></u>

•

·			
¹²⁴ Sb	1691.06 ± 0.04^{1}	53.2 $\pm 2.7^{1}$	
. •	2091.00 ± 0.05^{1}	6.57 ± 0.44^{1}	
¹²⁵ Sn	332.0 ± 0.5^{1}	0.01221	1. ND13
	350.9 ± 0.5^{1}	0.0023 ¹	2. Gr73
	469.7 ± 0.5^{1}	0.0138 ¹	
•	800.5 ± 0.5^{1}	0.0097 ¹	
	822.6 ± 0.5^{1}	0.0387 ¹	· · ·
	893.7 $\pm 0.5^{1}$	0.0025 ¹	· · · · · · · · · · · · · · · · · · ·
	915.5 $\pm 0.5^1$	0.0376 ¹	
	934.7 ± 0.5^{1}	0.00121	· · · · ·
•	1017.1 ¹	0.0028 ¹	
	1066.6 ¹	0.08871	
	1087.4 ¹	0.0093 ¹	
	1088.9 ¹	0.0429 ¹	
	1151.3 ¹	0.0011 ¹	
	1173.2 ¹	0.0029 ¹	· · · ·
	1221.0 ¹	0.00231	
	1419.5 ¹	0.00471	÷
	1806.65 ± 0.04^2	0.00151	
	2002.02 ± 0.04^2	0.0211	
	2275.71 ± 0.05^2	0.0019	
			· · ·

-13-

		:	
¹³² Cs	464.5 ¹	0.0197 ¹	1. ND13
	505.7 ¹	0.0083 ¹	2. Gr73
	567.0 ¹	0.00261	
	629.8 ¹	0.010 ¹	
	667.7 ¹	1.001	
	1031.4 ¹	0.00121	
•	1135.21	0.0050 ¹	
	1317.89 ± 0.03^2	0.00611	
	/		
¹³³ Ba	80.998 ± 0.008 ¹	0.36 ²	1. Gr70
	276.40 ± 0.01^{1}	0.075 ²	2. ND13
	302.85 ± 0.02^{1}	0.196 ²	:
	356.01 ± 0.02^{1}	0.67 ²	
	383.85 ± 0.02^{1}	0.094 ²	• •
			• •
¹³⁴ Cs	475.3	0.015	1. ND13
	563.1	0.08	
	569.2	0.14	
	604.6	0.98	
	795.8	0.88	
	801.8	0.09	
	1038.4	0.011	

¹³⁴Cs 1167.7 0.019 1365.0 0.034 ¹³⁷Cs 661.65 ± 0.02 1. He71 ¹³⁹Ce 165.853 ± 0.007 1. Gr70 ¹⁴¹Ce 145.41 ± 0.03^{1} 1. Wh67 2. Leg68 ¹⁵²Eu 121.780 ± 0.004^{1} 105.0 ± 2.1^2 1. Rae70 244.69 ± 0.01^{1} 27.8 ± 0.6^2 2. Mo70 295.93 ± 0.04^{1} 1.8 ± 0.15^3 3. No70 344.27 ± 0.01^{1} 100 411.07 ± 0.03^{1} 7.96 ± 0.16^2 443.98 ± 0.05^2 10.9 ± 0.2^2 778.87 ± 0.05^2 47.4 ± 0.9^2

56.3 $\pm 1.1^2$

 964.01 ± 0.05^2

-15-

	•		•	•
152 _{Eu}	1085.83 ± 0.07^2	39.6 $\pm 0.8^2$	1.	Rae70
•	1089.73 ± 0.07^2	6.42 ± 0.13^2	2.	Mo70
	1112.04 ± 0.05^2	50.9 $\pm 1.0^2$	3.	No70
• .	1408.02 ± 0.05^2	80.7 ± 1.6^2		··· :
i			· ·	
				•
	· · ·			
¹⁵³ Gd	14.07 ¹		1.	Led68
	10 821		2	Se72
	$41 = (V_{-})^{2}$	1 002	2.	ND12
	41.5 (Ka)-	1.00-	3.	ND13
	68.231	0.00013	4.	Rae70
	69.672 ± 0.002^4	0.024 ³		· .
	75.421 ± 0.002^4	0.00091 ³		
	83.367 ± 0.002^4	0.0021 ³		• • .
-	89.485 ± 0.003^4	0.00068 ³		· .
	97.429 ± 0.003^4	0.317 ³		
	103.179 ± 0.004^{4}	0.24 ³		
	172.8 ³	0.000048 ³		
		· · · ·		
¹⁵⁴ Eu	123.070 ± 0.004^{1}	116 $\pm 6^2$	1.	Rae70
	188.25 ± 0.01^{1}	0.61 ± 0.12^2	2.	Ri70
	247.939 ± 0.008^{1}	20.1 ± 1.0^2	3.	<u>Me68</u>
	444.44 ± 0.07 ¹	1.69 ± 0.15^2		
	581.91 ± 0.11 ¹	2.53 ± 0.23 ²		.
				·

-16-

	····		
¹⁵⁴ Eu	591.81 $\pm 0.04^{1}$	14.8 $\pm 0.8^2$	1
	692.43 ± 0.11^2	4.97 $\pm 0.30^2$	
•	723.30 ± 0.04^3	60.1 ± 3.1^2	
	756.92 ± 0.06^{1}	12.9 ± 0.6^2	
	873.24 ± 0.08^{1}	34.8 ± 1.7^2	
	996.32 $\pm 0.04^3$	29.4 $\pm 1.5^2$	
	1004.76 ± 0.04^3	50.6 ± 2.5^2	
	1274.45 ± 0.09^3	100 ²	
¹⁵⁵ Eu	45.297 ± 0.001^1	3.6 ± 0.7^2	1. Rae
	57.98 ± 0.002^{1}	-	2. Re7
	60.010 ± 0.002^{1}	4.3 ± 0.3^2	
	86.545 ± 0.003^{1}	100 ± 3^2	
	105.308 ± 0.003^{1}	68.3 ± 2.7^2	
·	**		
¹⁶⁰ Tb	86.788 ± 0.002^{1}	13.7 ± 2.0^{1}	1. Lu68
	197.035 ± 0.008^{1}	5.22 ± 0.29^{1}	2. He71
	215.646 ± 0.008^{1}	3.93 ± 0.22^{1}	3. La74
	298.58 $\pm 0.01^{1}$	27.1 $\pm 1.6^{1}$	4. Ke70
	309.56 ± 0.02^{1}	0.90 ± 0.04^{1}	• • •
	337.30 ± 0.03^{1}	0.33 ± 0.03^{1}	
	392.51 ± 0.03^{1}	1.36 ± 0.05^{1}	. ·
	765.19 ± 0.11 ¹	2.03 ± 0.18^{1}	
	879.36 ± 0.02^2	30.01	

-17-

·· · · · · · · · · · · · · · · · · · ·		•	·····
¹⁶⁰ Tb	962.29 $\pm 0.02^2$	10.2 ± 0.7^{1}	
•	966.14 \pm 0.02 ²	24.7 \pm 1.5 ¹	
A. 14	1177.93 ± 0.02^2	14.8 \pm 0.5 ¹	
	1271.84 ± 0.03^2	7.4 \pm 0.2 ¹	
	1311.90 ± 0.20^2	2.79 ± 0.17 ¹	
			· · ·
^{166m} Ho	80.57 ± 0.02	14.48 ± 0.48^2	1. Li74
	94.65 $\pm 0.03^{1}$	0.21 ± 0.03^{1}	2. Lav74
	119.04 ± 0.03^{1}	0.23 ± 0.03^{1}	3. Bu67
	121.16 ± 0.03^{1}	0.54 ± 0.05^{1}	
	160.06 ± 0.05^{1}	0.16 ± 0.03^{1}	
	161.75 ± 0.05^{1}	0.16 ± 0.03^{1}	
	184.41 ± 0.02^{1}	100 ²	
	190.71 \pm 0.03 ¹	0.31 ± 0.04^2	
	215.88 ± 0.03 ¹	3.94 ± 0.09^2	, ,
	231.28 ± 0.041	0.36 ± 0.03^2	
. *	259.72 ± 0.02^{1}	1.77 ± 0.12^2	
	280.46 ± 0.021	38.61 ± 0.46^2	
	300.74 ± 0.021	4.77 ± 0.09^2	
	339.78 ± 0.081	0.23 ± 0.04^{1}	
	365.74 ± 0.03 ¹	2.93 ± 0.06^2	
	410.94 ± 0.031	15.50 ± 0.19^2	
	451.52 ± 0.03^{1}	3.48 ± 0.07^2	
	464 83 + 0 041	$2.00 + 0.07^2$	· ·

-18-

^{166m} Ho	529.81 $\pm 0.03^{1}$	10.16 $\pm 0.32^2$	
	571.00 ± 0.03^{1}	6.77 ± 0.14 ²	
	594.48 ± 0.08^{1}	1.28 $\pm 0.18^2$	
	611.52 ± 0.07^{1}	1.48 ± 0.27^2	
	670.51 ± 0.04^{1}	7.01 $\pm 0.25^2$	
	691.21 ± 0.05^{1}	1.85 ± 0.09^2	
	711.69 ± 0.04^{1}	71.65 ± 0.68^2	
	736.67 ± 0.08^{1}	0.46 ± 0.04^2	
	752.27 ± 0.04^{1}	16.06 ± 0.40^2	
	778.82 ± 0.04^{1}	3.72 ± 0.07^2	
	810.31 ± 0.04^{1}	76.38 $\pm 0.82^2$	
	830.56 ± 0.04^{1}	12.07 ± 0.28^2	
	875.64 ± 0.05^{1}	1.14 ± 0.07^2	
	950.94 ± 0.06^{1}	3.5 ± 0.14^2	
	1241.44 ± 0.06^{1}	1.22 ± 0.05^2	
	1282.12 ± 0.07^{1}	0.38 ± 0.04^2	
	1401.30 $\pm 0.15^{1}$	0.86 ± 0.05^2	· · · ·
	1427.50 ± 0.20^{1}	0.65 ± 0.03^2	· · ·
			•
ΫЪ	50.5 $\pm 0.2^{1}$	409 ± 24^{1}	1. La73a
	57.5 $\pm 0.2^{1}$	106 ± 6.31^{1}	2. Ne70
	63.125 ± 0.003^2	125.37 ± 6.58^{1}	
	93.607 ± 0.003^2	5.07 + 0.161	

-19-

· ·		-20-	
169 _{Yb}	109.88 ± 0.28^{1}	49.09 ± 1.70^{1}	
	118.28 ± 0.23^{1}	3.71 ± 0.11^{1}	
	130.47 ± 0.16^{1}	29.73 \pm 0.87 ¹	
· · ·	177.14 ± 0.21^{1}	62.08 ± 2.02^{1}	
	198.02 ± 0.09^{1}	100	
	261.11 $\pm 0.21^{1}$	3.70 ± 0.092^{1}	
	307.77 ± 0.28^{1}	27.97 ± 0.90^{1}	
• •			
		· · · ·	
1 50			
1,70Tm	84.257 ± 0.003^{1}		1. Rae70
•			2. Gr70
			3. Ne70
	(Error)	(Error)	
$177m_{Lu}$	69.2	0.08	1. Ha67
	71.66 (6)	6.8 (4)	
	105.31 (5)	100	
	112.95 (5)	179 (13)	
	115.96 (10)	5.0 (4)	
	117.17 (13)	1.8 (2)	
	121.63 (5)	52 (4)	
	128.50 (5)	127 (8)	
	136.72 (5)	11.7 (8)	
	145.78 (10)	6.6 (9)	

• • •		-21-		
· · ·			•	
$177m_{Lu}$	147.15 (8)	29	(2)	
	153.29 (6)	133	(8)	
•	159.75 (8)	5.4	(5)	
•	171.85 (10)	37	(4)	
	174.42 (6)	96	(8)	
•	177.03 (8)	26	(3)	
	181.98 (10)	0.75	(13)	
•	195.52 (6)	7.0	(6)	
	204.08 (6)	114.	(8)	
	208.34 (6)	485	(40)	
	214.45 (6)	48	(4)	
	218.06 (6)	27	(3)	
	228.44 (6)	287	(26)	
	233.83 (6)	45	(4)	
	249.65 (6)	47	(4)	
	268.79 (6)	25	(3)	
	281.78 (7)	108	(9)	
	283.42 (13)	4.7	(1.2)	
· .	291.42 (10)	7.7	(9)	
	292.51 (10)	7.8	(9)	
	296.45 (8)	38	(4)	
	299.03 (10)	12	(2)	
	305.52 (8)	14	(1)	
	313.69 (8)	9.4	(7)	
	318.98 (8)	78	(8)	
	321.32 (12)	. 9	(1)	
	327.66 (8)	136	(8)	

······			• ;	
^{7m} Lu	341.64 (8)	13 (1)		
	367.41 (8)	23 (2)		
	378.51 (8)	222 (17)		
•	385.02 (8)	24 (2)		· .
	413.64 (12)	131 (10)		
	418.51 (10)	161 (12)		
	426.29 (10)	3.4 (4)		
	465.96 (12)	19 (2)		· ·
				•
				 • .
•				•
Ta	31.736 ± 0.001^{1}		1.	He71
	42.715 ± 0.002^{1}		2.	La74
• •	67.750 ± 0.001^{1}	121.00 ± 5.20^2	3.	Ja71
	84.680 ± 0.002^{1}	7.82 ± 0.16^2	4.	Wh69
	100.105 ± 0.001^{1}	37.43 ± 0.80^2	5.	Sa69
	113.68 ± 0.10^2	6.15 ± 0.14^2	6.	Ne70
	152.434 ± 0.002^{1}	18.70 ± 0.60^2	•	· · ·
	156.387 ± 0.003^{3}	7.78 ± 0.20^2		
	179.393 ± 0.004^3	8.57 ± 0.25^2		
· ·	198.29 ± 0.15^2	3.75 ± 0.12^2		
•	222.109 ± 0.005^3	21.26 ± 0.62^2		
	229.322 ± 0.005^3	10.3 ± 0.3^3		
	264.072 ± 0.009^3	9.46 ± 0.29^2	•	
	891.98 ± 0.02 ⁴	0.15 ± 0.02^4		
	928.00 ± 0.02^4	2.10 ± 0.08^2		
	959.73 ± 0.02^4	1.12 ± 0.06^2		

¹⁸²Ta

*.*17

-22

· · ·	· · · ·	-23-		
	1. 1. 1. 1. •			
¹⁸² Ta	1001.69 ± 0.02^4	6.43 ± 0.11		
	1044.41 ± 0.02^4	0.69 ± 0.08^4		
	1113.40 ± 0.05^4	1.11 $\pm 0.07^2$		
	1121.30 ± 0.01^4	100 ²		
	1157.31 ± 0.01^4	1.84 ± 0.35^4		· · · · · · · · · · · · · · · · · · ·
· ·	1158.08 ± 0.02^{4}	0.99 ± 0.28^4		
	1189.05 $\pm 0.01^4$	46.10 ± 1.52^2		
	1221.40 ± 0.01^4	78.4 \pm 1.16 ²		
	1231.01 $\pm 0.01^4$	32.60 ± 0.52^2		
	1257.41 ± 0.01^4	4.31 ± 0.08^2		•
	1273.73 ± 0.01^4	1.83 ± 0.05^2		. •
	1289.15 ± 0.01^4	3.96 ± 0.08^2		
	1342.71 ± 0.05^4	0.74 ± 0.03^2		
	1373.80 ± 0.01 ⁴	0.65 ± 0.03^2	· · ·	
	1387.40 ± 0.01^4	0.21 ± 0.01^2	Ч.,	
	1410.10 ± 0.10^4	0.12 ± 0.01^4		
	1453.12 ± 0.01^4	0.12 ± 0.01^4		
	•	· · · ·		
				· · ·
¹⁸³ Ta	46.484 ± 0.002^3	0.22 ²	1. Gr70	
	52.596 ± 0.001^{1}	0.24 ²	2. ND13	
	82.919 ± 0.001^1	0.011 ²	3. Ne70	
	84.712 ± 0.002^{1}	0.007 ²		
	99.080 ± 0.002 ¹	0.222		
	107.932 ± 0.001^{1}	0.35 ²		
	144.127 ± 0.002^{1}	0.085 ²	¦: ∙	
	<u> </u>	·····		· · ·

•		-24-	
¹⁸³ Ta	192.646 ± 0.005^1	0.0092	
	291.724 ± 0.006^{1}	0.20 ²	, ,
	353.999 ± 0.004^{1}	0.40 ²	
•	365.615 ± 0.007^1	0.035 ²	
.:	406.589 ± 0.006^{1}	0.090 ²	
		· · ·	
¹⁸⁵ 0s	592.06 ± 0.01^{1}	0.01322	1. He71
	646.11 ± 0.02^{1}	0.813 ²	2. ND13
	717.42 ± 0.02^{1}	0.0425^{2}	
	874.81 ± 0.02^{1}	0.0672^{2}	
	880.26 ± 0.02^{1}	0.0549 ²	
	······································		
,			
¹⁹¹ 0s	82.43 ± 0.01^{1}	0.001 ²	1. Rae70
	129.431 ± 0.005^{1}	1.00 ²	2. ND13
· . ·			
¹⁹² Ir	205.70 ± 0.10^{1}	4.66 $\pm 0.11^{1}$	1. La74
	295.949 ± 0.006^2	35.70 ± 1.02^{1}	2. Gr70
	308.445 ± 0.007^2	36.70 ± 1.05^{1}	3. He71
	316.497 ± 0.007^2	100 ¹	4. Ge73
	374.50 ± 0.15^{1}	0.73 ± 0.05^{1}	5. Leg70
·· ···································			·
			· · · ·
		•	· · · ·

	· · · · · · · · · · · · · · · · · · ·		
¹⁹² Ir	468.06 ± 0.01^3	60.05 ± 1.16^{1}	6. In73
· .	484.57 ± 0.01^3	4.88 ± 0.20^{1}	
•	588.57 ± 0.01^3	4.86 ± 0.18^{1}	
•	604.40 ± 0.01^3	10.92 ± 0.21^{1}	
· · ·	612.45 ± 0.01^3	7.35 ± 0.32^{1}	
• .	884.52 ± 0.02^3	0.48 ± 0.02^{1}	
			· .
¹⁹⁸ Au	411.794 ± 0.008^{1}	0.947 ²	l. He71
÷	675.88 ± 0.02^{1}	0.0105 ²	2. ND13
·	1087.67 ± 0.02^{1}	0.00227 ²	
203 _{Hg}	279.188 ± 0.006 ¹		1. Gr70
207 _{Bi}	569.68 ± 0.01^{1}	0.98 ²	1. He71
	1063.64 ± 0.02^{1}	0.77 ²	2. Led68
	1770.19 ± 0.04^3	0.09 ²	3. Gr73
, .			

-25-

-26-	
1.1	1

1. Me72

2.

Mo70

		(%Error)
	$53.24 \pm 0.02^{1,2}$	$0.123 (7.0)^{1}$
	186.180 ± 0.004^2	0.0321
·	242.00 ± 0.02^2	$0.079 (3.5)^1$
	$258.99 \pm 0.06^{1},^{2}$	$0.0058 (4.9)^1$
	$274.67 \pm 0.06^{1,2}$	$0.0050 (4.4)^1$
	295.241 ^{1,2}	$0.202 (3.6)^1$
	351.96 ± 0.02^2	$0.401 (3.6)^1$
	405.7 $\pm 0.1^{1,2}$	$0.0017 (7.4)^1$
	$454.8 \pm 0.1^{1,2}$	$0.0033 (7.0)^1$
	461.8 $\pm 0.1^{1,2}$	$0.0022 (7.5)^{1}$
	469.0 $\pm 0.1^{1,2}$	$0.0013 (10.5)^1$
	474.5 $\pm 0.1^{1,2}$	0.00076(13) ¹
	$480.44 \pm 0.1^{1,2}$	0.0033 (7.0) ¹
	$487.13 \pm 0.1^{1,2}$	0.0045 (6.2) ¹
	580.2 $\pm 0.1^{1,2}$	0.0036 (7.0) ¹
	$609.27 \pm 0.05^{1,2}$	$(3.3)^1$
	$665.40 \pm 0.07^{1},^{2}$	0.0165 (4.7) ¹
	702.10 $\pm 0.1^{1,2}$	0.00545(8.0) ¹
	719.85 $\pm 0.1^{1,2}$	0.0042 (8.0) ¹
	768.453 ^{1,2}	0.0532 (3.5) ¹
	$785.80 \pm 0.1^{1},^{2}$	0.0121 (4.6) ¹
	$806.16 \pm 0.1^{1,2}$	0.0131 (4.5) ¹
	$839.04 \pm 0.1^{1},^{2}$	$0.0060 (5.5)^1$
	$934.06 \pm 0.6^{1,2}$	0.0334 (3.8) ¹
:	964.12 ± 0.1^{1} , ²	0.00427(8.1) ¹
	$1051.96 \pm 0.1^{1,2}$	0.00324(9.0) ¹

²²⁶Ra

		(%Error)	
226 _{Ra}	1120.28 $\pm 0.06^{1}$, ²	0.160 $(3.3)^1$	
	1155.17 $\pm 0.07^{1,2}$	$0.0182 (4.4)^1$	
· .	$1207.52 \pm 0.08^{1,2}$	0.0048 (8.0) ¹	
. ·	$1238.13 \pm 0.06^{1,2}$	$0.062 (3.6)^1$	
	$1280.98 \pm 0.08^{1,2}$	$0.0156 (4.8)^1$	
	$1377.64 \pm 0.05^{1},^{2}$	0.0418 (4.6) ¹	
	$1385.33 \pm 0.06^{1,2}$	$0.0086 (5.7)^1$	
	1401.44 $\pm 0.06^{1,2}$	$0.0144 (5.2)^1$	
•	1407.98 $\pm 0.06^{1,2}$	0.0260 (4.9) ¹	
	$1509.22 \pm 0.07^{1,2}$	$0.0230 (4.4)^{1}$	
	$1583.12 \pm 0.1^{1},^{2}$	0.0076 (6.4) ¹	
	$1661.24 \pm 0.07^{1,2}$	0.0121 $(6.0)^1$	
	$1729.55 \pm 0.07^{1},^{2}$	$0.0307 (4.0)^1$	
	$1764.49 \pm 0.07^{1,2}$	$0.166 (3.3)^1$	
	$1838.33 \pm 0.1^{1,2}$	$0.0041 (5.2)^1$	
	$1847.44 \pm 0.07^{1,2}$	$0.022 (5.7)^1$	
·	2118.52 $\pm 0.1^{1,2}$	$0.0123 (5.0)^1$	•
	$2204.14 \pm 0.1^{1,2}$	0.0530 (4.0) ¹	
	2293.21 $\pm 0.1^{1,2}$	$0.0034 (7.0)^{1}$	
	$2447.63 \pm 0.1^{1,2}$	0.0165 (4.1) ¹	·
		· · · · · · · · · · · · · · · · · · ·	•
			· .
²²⁸ Th	238.62 ± 0.01^{1}	0.4481	1. ND13
	583.17 ± 0.01^2	0.2871	2. Gr71
	2614.61 ± 0.10^{1}	0.3451	· · ·

:			
²⁴¹ Am	26.345 ± 0.001^1	7.0 ²	1. Ne70
	59.537 ± 0.001^3	100	2. Led68
			5. 6170
243 _{Cm}	57.26	0.14 ± 0.01	1. AH72
. •	99.536	13.5 ± 0.5	
	103.750	20.8 ± 7.6	
	117.1	7.6 ± 0.3	
	120.6	2.6 ± 0.1	
	209.76	3.30 ± 0.10	
	228.20	10.6 ± 0.3	
	254.41	0.11 ± 0.01	
	272.87	0.08 ± 0.01	
	277.62	14.0 ± 0.4	
	285.47	0.73 ± 0.02	
	311.7	0.017 ± 0.002	
	315.91	0.018 ± 0.000	
	322.3 334.33	0.007 ± 0.001 0.024 ± 0.002	

-28-

:

REFERENCES:

G. Ardisson, S. Laribi, and C. Marsol, Nucl. Phys. A223 Ar74 (1974) 616. I. Ahmad and M. Wahlgren, Nucl. Instr. Meth. 99, (1972) 333. Ah71 Au69 F. P. Auer, J. J. Reidy, and M. L. Wiedenbeck, Nucl. Phys. <u>A124</u> (1969) 199. Bu67 S. B. Burson, P. F. A. Goudsmit, and J. Konijn, Phys. Rev. <u>158</u> (1967) 1161. Ca71 D. C. Camp and G. L. Meredith, Nucl. Phys. A166 (1971) 349. Ch67 C. Chasman, K. W. Jones, R. A. Ristinen, and D. E. Alburger, Phys. Rev. 159 (1967) 830. G. Chilosi, E. Eichler, and N. K. Aras, Nucl. Phys. A123 Ch169 (1969) 327. B. K. Das Mahapatra and P. Mukherjee, Nucl. Instr. Meth. 107 Das73 (1973) 611. Ei68

C. W. E. Van Eijk, B. Van Nooijen, F. Schutte, S. M. Brahmavar, J. H. Hamilton, and J. J. Pinajian, Nucl. Phys. <u>A121</u> (1968) 440.

Ga72 P. L. Gardulski and M. L. Wiedenbeck, Nucl. Instr. Meth. <u>105</u> (1972) 169.
Ge71 R. J. Gehrke, J. E. Cline, and R. L. Heath, Nucl. Instr. Meth. <u>91</u> (1971) 349.
Ge73 R. J. Gehrke, Nucl. Phys. <u>A204</u> (1973) 26.

-29-

Gr70	R. C. Greenwood, R. G. Helmer, and R. J. Gehrke, Nucl. Instr. Meth. <u>77</u> (1970) 141.
Gr73	R. G. Greenwood, R. G. Helmer, and R. J. Gehrke, unpublished.
Gu68	R. Gunnink, R. A. Meyer, J. B. Niday, and R. P. Anderson, Nucl. Instr. Meth. <u>65</u> (1968) 26.
Ha67	A. J. Haverfield, F. M. Bernthal, and J. M. Hollander, Nucl. Phys. <u>A94</u> (1967) 337.
Ham71	J. H. Hamilton, S. M. Brahmavar, J. B. Gupta, R. W. Lide, and P. H. Stelson, Nucl. Phys. <u>A172</u> (1971) 139.
Han73	A. Hanser, Nucl. Instr. Meth. <u>107</u> (1973) 187.
He71	R. G. Helmer, R. C. Greenwood, and R. J. Gehrke, Nucl. Instr. Meth. <u>96</u> (1971) 173.
In73	H. Inoue and Y. Yoshizawa, Nucl. Instr. Meth. <u>108</u> (1973) 385.
· · ·	
Ja71	L. J. Jardine, Nucl. Instr. Meth. <u>96</u> , (1971) 259.
Ke70	G. E. Keller and E. F. Zganjar, Nucl. Phys. <u>A147</u> (1970) 527.
Ko71	J. Konijn and E. W. A. Lingeman, Nucl. Instr. Meth. 94 (1971) 389.
• •	
La74	N. Lavi, Nucl. Instr. Meth. <u>116</u> (1974) 457.
La73a	N. Lavi, Nucl. Instr. Meth. <u>107</u> (1973) 197.
La73b	N. Lavi, Nucl. Instr. Meth. <u>109</u> (1973) 265.
Led68	C. M. Lederer, J. M. Hollander, and I. Perlman, Table of Isotopes, 6th ed., John Wiley & Sons, Inc. (1968).

-30-

Leg68	J. Legrand, J. P. Boulanger, and J. P. Brethon, Nucl. Phys. <u>A107</u> (1968) 177.
Leg70	J. Legrand, J. Morel, and C. Clement, Nucl. Phys. <u>A142</u> (1970) 63.
Li74	E. W. A. Lingeman, F. W. N. De Boer, and B. J. Meijer, Nucl. Instr. Meth. <u>118</u> (1974) 609.
Lu68	M. A. Ludington, J. J. Reidy, M. L. Wiedenbeck, D. J. McMillan, J. H. Hamilton, and J. J. Pinajian, Nucl. Phys. <u>A119</u> (1968) 398.
MeN73	L. A. McNelles and J. L. Campbell, Nucl. Instr. Meth. <u>109</u> (1973) 241.
Me68	R. A. Meyer, Phys. Rev. <u>170</u> (1968) 1089.
Me72	R. A. Meyer, unpublished.
Mo 70	R. S. Mowatt, Can. J. Phys. <u>48</u> (1970) 2606.
ND13	Nucl. Data Tables 13 (1972).
NDA8	Nucl. Data Tables <u>A8</u> (1970).
Ne 70	G. C. Nelson and B. G. Saunders, Nucl. Instr. Meth. <u>84</u> (1970) 90.
No70	A. Notea and E. Elias, Nucl. Instr. Meth. <u>86</u> (1970) 269.
·	
Phe70	M. E. Phelps, D. G. Sarantites, and W. G. Winn, Nucl. Phys. A149 (1970) 647.
Ph172	G. B. Phillips, S. M. Brahmavar, J. H. Hamilton, and T. Kracikova, Nucl. Phys. <u>A182</u> (1972) 606.
Pr71	W. W. Pratt, Nucl. Phys. <u>A170</u> (1971) 223.

-31-