Separation of Metal Ions from Liquid Waste Streams

PDF Version Also Available for Download.

Description

A unique mechanism was verified for removing uranium from continuously flowing aqueous solutions on a carbon nanofiber electrode with a bias voltage of -0.9 volts (dc versus Ag/AgC1). Uranium concentration was reduced from 100 ppm in the inlet feed to below 1 ppm in a single pass. Cell sizes of 1 cm, 2 inch and 4 inch evaluated during this program were all found to electrosorb uranium from an aqueous stream. The 4 inch cell performed well at uranium concentrations of 1000 ppm. Normally, ordinary electrolysis is not an option for removing uranyl ions because the electrodeposition potential is higher ... continued below

Physical Description

33 pages

Creation Information

Glasgow, D. G. & Kennel, E. B. December 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A unique mechanism was verified for removing uranium from continuously flowing aqueous solutions on a carbon nanofiber electrode with a bias voltage of -0.9 volts (dc versus Ag/AgC1). Uranium concentration was reduced from 100 ppm in the inlet feed to below 1 ppm in a single pass. Cell sizes of 1 cm, 2 inch and 4 inch evaluated during this program were all found to electrosorb uranium from an aqueous stream. The 4 inch cell performed well at uranium concentrations of 1000 ppm. Normally, ordinary electrolysis is not an option for removing uranyl ions because the electrodeposition potential is higher than the dissociation voltage of water. Thus, the ability to electrosorb uranium with greater than 99% effectiveness is a surprising result. In addition, the process was found to be reversible, so that the uranium can be released in a highly concentrated form. In addition to verifying the effectiveness of the system on bench top scale, a regeneration protocol was developed, consisting of passing a 0.1 M KNO{sub3}, solution at a pH of 2.0 and an applied potential of +1.0 V (dc versus Ag/AgC1) which resulted in a measured regeneration of 70% of the electrosorbed uranium. Other experiments studied the effect of pH on electrosorption and desorption, establishing a range of pH for both processes. Finally, it was found that, for an inlet solution of 100 ppm, the carbon nanofiber electrodes were able to electrosorb an amount of uranium in excess of 60% of the electrode mass.

Physical Description

33 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/82744-1
  • Grant Number: FG02-99ER82744
  • DOI: 10.2172/876749 | External Link
  • Office of Scientific & Technical Information Report Number: 876749
  • Archival Resource Key: ark:/67531/metadc879920

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 2004

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 7, 2016, 2:33 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Glasgow, D. G. & Kennel, E. B. Separation of Metal Ions from Liquid Waste Streams, report, December 1, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc879920/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.