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A model-independent partial-wave analysis of the S-wave component of the Kπ system from
decays of D+ mesons to the three-body K−π+π+ final state is described. Data come from the
Fermilab E791 experiment. Amplitude measurements are made independently for ranges of K−π+

invariant mass, and results are obtained below 825 MeV/c2, where previous measurements exist only
in two mass bins. This method of parametrizing a three-body decay amplitude represents a new
approach to analysing such decays. Though no model is required for the S-wave, a parametrization of
the relatively well-known reference P - and D-waves, optimized to describe the data used, is required.
The observed phase variation for the S-, P - and D-waves do not match existing measurements of
I = 1

2
K−π+ scattering in the invariant mass range in which scattering is predominantly elastic.

If the data are mostly I = 1

2
, this observation indicates that the Watson theorem, which requires

these phases to have the same dependence on invariant mass, does not apply to these decays.
The production rate of K−π+ from these decays, if assumed to be predominantly I = 1

2
, is also

found to have a significant dependence on invariant mass in the region above 1.25 GeV/c2. These
measurements can provide a relatively model-free basis for future attempts to determine which
strange scalar amplitudes contribute to the decays.

PACS numbers: 10., 13.25.Es, 13.25.Ft, 13.75.Lb, 14.40.Aq, 14.40.Lb
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I. INTRODUCTION

Kinematics and angular momentum conservation in decays of ground state, heavy-quark mesons to three pseu-
doscalars strongly favor production of S-wave systems. These decays have therefore been regarded as a source of
information on the composition of the scalar meson (spin-parity JP = 0+) spectrum. Extracting this information
has, however, been done in model-dependent ways that can influence the outcome. For the di-meson subsystems,
vector and tensor resonances are relatively well-understood, but, as larger samples of D and B meson decays become
available, the correct modelling of the S-wave contributions becomes an increasingly important factor in the task of
obtaining satisfactory fits to the data.

Analyses typically use an isobar model formulation in which the decays are described by a coherent sum of a
non-resonant three-body amplitude NR, usually taken to be constant in magnitude and phase over the entire Dalitz
plot, and a number of quasi two-body (resonance + bachelor) amplitudes where the bachelor particle is one of the
three final state products, and the resonance decays to the remaining pair. It is assumed that all resonant and NR
processes taking part in the decay are described by amplitudes that interfere, and have relative phases and magnitudes
determined by the decay of the parent meson. In cases where all three decay products are pseudoscalar (P ) particles,
angular momentum conservation requires that the resonances produced are scalar (S-wave), vector (P -wave), etc .
For D mesons, decays beyond D-wave are highly suppressed by the angular momentum barrier factor and can be
neglected.

Within this formalism, the decays D+ → π−π+π+ and D+ → K−π+π+ [1] were once thought to require very large,
constant NR amplitudes [2, 3, 4]. Using larger samples, the Fermilab E791 collaboration found that a satisfactory
description of these decays requires more structure. By including S-wave isobars, σ(500) → π+π− in π−π+π+ [5] and
κ(800) → K−π+ in K−π+π+ [6], a much-improved modelling of the Dalitz plots was achieved, and the need for a
constant NR term was much reduced in each case.

The FOCUS collaboration, using an even larger sample of D+ → π−π+π+ decays, found an acceptable fit [7]
using a Kmatrix description of the S-wave with no σ(500) pole. However, a parametrization of the NR background
was required to achieve an acceptable fit. The BaBar and Belle collaborations [8, 9, 10], with the measurement of
CP violation parameters in B− → D0(→ K0

sπ
+π−)K− decays as their primary goal, introduce σ(500) and another

σ(1000) isobar in order to obtain an acceptable description of the complex amplitude for the D0 Dalitz plot.
The important issue of whether scalar particles σ(500) and κ(800) exist is not convincingly settled. Further

observations of these isobars were recently reported in π−π+ and K−π+ systems from J/ψ decays [11, 12]. However,
these results were modelled on variations of the simple Breit-Wigner form for the states adopted in the cases cited.
It may be that quite different descriptions are actually required [13]. Ultimately, a less model-dependent analysis of
the data should help resolve the issue of the σ and the κ.

Model-independent measurements of the energy dependence of these S-wave amplitudes, particularly in the low
invariant mass regions, where confusion is greatest, is therefore an important experimental goal. Such a Model-
Independent Partial Wave Analysis (MIPWA) is reported here for the K−π+ system produced in D+ → K−π+π+

decays. One earlier measurement has been made for π−π+ systems from D+ → π−π+π+ decays [14], in which the
“amplitude difference” (AD) method [15] was employed. This method can only be used when there exists a region
of the Dalitz plot that can be described by the sum of a single resonance and an S-wave amplitude that is to be
measured. Interference of the resonance with this S-wave introduces an asymmetry in the distribution of the other
invariant mass combinations that can be measured at different values of invariant masses in the band. As there is no
such region in the Dalitz plot for the data reported here, this method is not used.

For the K−π+ system, the best results of an MIPWA currently available come from the LASS experiment [16], in
which K−π+ scattering was studied for invariant masses above 825 MeV/c2. Below 825 MeV/c2, measurements have
been made for the mass bins 770-790 MeV/c2[17] and 700-760 MeV/c2[18], though with less precision. Information
on the Kπ S-wave amplitude near or slightly above the K∗(892) has been extracted by the BaBar collaboration in
studies of B decays to J/ψKπ [19], and by FOCUS in semi-leptonic D decays to Kπℓν [20], the low mass region has
not been covered in either case.

In this paper, we describe an MIPWA in the mass range from K−π+ threshold up to 1.72 GeV/c2, the kinematic
limit for decays ofD+ mesons toK−π+π+ final states. The amplitudes obtained for the S-wave require no assumptions
about its dependence on invariant mass, though they do rely on a model for the relatively well-understood P - and
D-waves. As such, they should provide an unbiased input for comparisons with theoretical models for scalar states.

This paper is organized as follows. In the following section we present the data sample. Next we describe the
method used to extract complex amplitudes from the S-wave K−π+ system in a way that does not require a model
for its dependence on invariant mass. In Section IV this is applied to the sample of D+ → K−π+π+ decays. The
amplitudes obtained are then compared, in Section V, with the S-wave amplitude derived from the Breit-Wigner
isobar model fit that best represents the data. This model, applied to these data, was presented in Ref. [6], and
includes a κ(800) isobar. In Section VI the results of the MIPWA are compared with amplitudes measured in K−π+
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elastic scattering, and with the expectations of the Watson theorem [21], whose applicability to weak hadronic decays
has not previously been tested. Systematic uncertainties are discussed in Sec. VII. Finally, some conclusions are
drawn. In Appendix A we point out limitations, ambiguities and other technicalities inherent in this kind of analysis.

II. THE E791 DATA

The analysis is based on a sample of D+ → K−π+π+ candidates from Fermilab experiment E791. The experiment
is described in detail in Ref. [22]. The same sample is used in this paper as the one described in Ref. [6], where an
isobar model fit to these data was described. The selection process used in obtaining the sample is outlined below,
but more details are given in Ref. [6].

In this paper, s is used to denote the K−π+ squared invariant mass. Where it is important to distinguish, the
two pions (and their corresponding s values) are labelled, respectively, π+

A
and π+

B
(sA and sB). A clear peak in the

K−π+π+ invariant mass M distribution is observed with 15,079 events in the mass range 1.810 < M < 1.890 GeV/c2,
of which 94.4% are determined to be signal. The major sources of background are incorrect three-body combinations

(3.58%), and reflections of D+
s → φπ+ and D+

s → K
∗0
K+ decays (1.75% and 2.61%, respectively) in which a K+ is

incorrectly identified as a π+. The probability density function (PDF) for these backgrounds over the Dalitz plot is
obtained from events in the sideband region of the K−π+π+ invariant mass distribution and, for the second and third
sources, from a large sample of Monte Carlo (MC) simulated events. An appropriately weighted combination of these
three backgrounds is determined from their distributions in M . The efficiency for reconstructing the D+ decays (the
signal) is also determined from the MC events. It is described in this paper by a function ǫ(sA, sB).

A. E791 Dalitz Plot

The symmetrized Dalitz plot for this sample is shown in Fig. 1 where sA is plotted vs. sB (and the converse). A
horizontal (and the symmetrized vertical) band corresponding to the presence of the P -wave K∗(892) resonance is
clear. Complex patterns of both constructive and destructive interference near 1400 MeV/c2 due to either S-wave
K∗

0 (1430), P -waveK∗

1 (1410) orD-waveK∗

2 (1430) are also observed. A further contribution from the P -waveK∗

1 (1680)
state is also present, as determined by fitting. This is difficult to see due to smearing of the Dalitz boundary resulting
from the finite resolution in the three-body mass.

All these resonances are well-established and are known to have significant K−π+ partial widths. Interference
between resonances is evident in the regions of overlap.

B. Asymmetry in the K−π+ System

One of the most striking features of the Dalitz plot is the asymmetry in each K∗(892) band. In any given K−π+

mass slice, a greater density of events exists at one end of that slice than at the other. This asymmetry is also evident
in the region closest to the K∗(892) peak itself. This is most readily explained by interference with a K−π+ S-wave
component and clearly shows that these data can be used to infer the structure of the S-wave amplitude, provided
an adequate modelling of the remainder of the plot is possible.

This asymmetry, α, depends on the distribution of the helicity angle, θ, the angle between K− and π+
B

in the K−π+
A

rest frame. It is defined [23] as

α =
Ncos θ>0 −Ncos θ<0

Ncos θ>0 +Ncos θ<0
(1)

where N is the efficiency-corrected number of events in the indicated regions of cos θ. In Fig. 2, α is plotted as
a function of the K∗(892) Breit-Wigner (BW) phase φBW = tan−1[m0Γ/(m

2
0 − s)], where the peak mass m0 =

896.1 MeV/c2 and the mass dependent width Γ = 50.7 MeV/c2 at the peak mass. A change in the sign of α occurs
when φBW ∼ 56◦, at an invariant mass below the K∗(892) peak. We note here that, in Kπ elastic scattering [16], α
is observed to reach zero at φBW ≈ 135.5◦, a mass above the K∗(892) peak. Evidently there is a ∼ −79◦ shift in s-p
relative phase in this D+ decay relative to that observed in Kπ elastic scattering.
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FIG. 1: Dalitz plot for D+ → K−π+
A π+

B decays. The squared invariant mass sB of one K−π+ combination is plotted against
sA, the squared invariant mass of the other combination. The plot is symmetrized, each event appearing twice. Lines in both
directions indicate values equally spaced in squared effective mass at each of which the S-wave amplitude is determined by the
MIPWA described in section III. Kinematic boundaries for the Dalitz plot are drawn for three-body mass values M = 1.810
and M = 1.890 GeV/c2, between which data are selected for the fits.

III. FORMALISM

A. K−π+ Partial Wave Expansion

The Dalitz plot in Fig. 1 is described by a complex amplitude Bose-symmetrized with respect to the identical pions
π+

A
and π+

B
:

A = A(sA, sB) +A(sB , sA). (2)

Little is known about the π+π+ system, and certainly there are no known isospin I = 2 resonances in it [24, 25].
The amplitude A is therefore written as the sum of K−π+ partial waves labelled by angular momentum quantum
number L,

A(sA, sB) =

Lmax
∑

L=0

(−2pq)LPL(cos θ) ×

FL

D
(q, rD) × CL(sA), (3)

corresponding to production of K−π+ systems with spin J = L and parity (−1)L in these D+ decays. In this analysis,
the sum is truncated at Lmax = 2 since the D-wave K∗

2 (1430), as measured in reference [6], contributes only about
0.5% to the decays. This is already small and higher partial-waves are expected to be even further suppressed by
the angular momentum barrier. With no way to distinguish I = 1

2 and I = 3
2 components in the K−π+ systems

produced, their sum is measured in this paper.
In Eq. (3), ~p and ~q are momenta for the K− and bachelor π+

B
respectively, in the K−π+

A
rest frame. The cosine of

the helicity angle θ is then given in terms of the masses mK− (mπ+) and energies EK− (Eπ+) of the K− (π+
B

) in the
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FIG. 2: The asymmetry α plotted vs. BW phase φBW for the K∗(892). These quantities are described in the text. α becomes
zero at φBW ∼ 56 degrees.

K−π+
A

rest frame by:

cos θ = p̂ · q̂

= EK−Eπ+
B
−
(

sB −m2
K− −m2

π+

)

/2

pq
. (4)

This is the argument of the Legendre polynomial functions PL. FL

D
is a form factor for the parent D meson which

depends on q, L and on the D’s effective radius r = rD:

F0
D

= e−(rq)2/12 scalar

F1
D

=
[

1 + (rq)2
]

−
1
2 vector

F2
D

=
[

9 + 3(rq)2 + (rq)4
]

−
1
2 tensor

(5)

For L > 0, these form-factors are derived for non-relativistic potential scattering [26]. For L = 0, the Gaussian form
in Eq. (5), suggested by Tornqvist [27] to be a preferred way to describe scalar systems, is used. This form was used
also in Ref. [6].

The CL(sA) are complex functions, and are the invariant-mass-dependent parts of the respective partial waves.
They do not depend on the other Dalitz plot variable sB and are referred to in this paper as the K−π+ amplitudes.
Provided that interactions between the K−π+

A
system and the bachelor π+

B
can be neglected, the CL(sA) are related

to the corresponding amplitudes TL(s) measured in K−π+ scattering experiments by

CL(s) ≡ |CL(s)|eiφL(s) =

√
s

p

PL(s)TL(s)

pLFL
D

, (6)

where PL(s) describes the K−π+ production in each wave in the D decay process. This replaces the K−π+ coupling
present in elastic scattering (proportional to the 2-body phase-space factor

√
s/p and barrier factor pL).

The principal goal of this analysis is to measure C0(s), using all higher L contributions to the Dalitz plot as an
“interferometer”. This requires a model for C1(s) and C2(s), the reference P - and D- waves.

B. The Reference Waves

As in previous analyses, a Breit-Wigner isobar model is used to describe the P - and D-waves. Linear combinations
of resonant propagators WR, one for each of the established resonances R having the appropriate spin, and each with a
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complex coupling coefficient with respect to K∗(892), BR = bRe
iβR , are constructed. Three possible K−π+ resonances

are included in the P -wave, but only one in the D-wave in the invariant mass range available to these decays:

C1(s) = [WK∗(892)(s) +BK∗

1
(1410)WK∗

1
(1410)(s) +

BK∗

1
(1680)WK∗

1
(1680)(s)] ×FL

R
(p, rR), (7)

C2(s) =
[

BK∗

2
(1430)WK∗

2
(1430)(s)

]

×FL

R
(p, rR). (8)

where FL

R
is a form factor for the resonances in the K−π+ system, required to ensure that the resonant amplitudes

vanish for invariant masses far above the pole masses. It is assumed to have the same dependence on center-of-mass
momentum and angular momentum as the D form factor FL

D
, but to depend on a different effective radius r = rR. The

coefficients in Eq. (7) have their origin in the K−π+ production process arising from D+ decays, and are therefore
treated as unknown parameters in the fits.

Each propagator is assumed to have a Breit-Wigner form defined as:

WR(s) =
1

m2
R
− s− imRΓ(rR, s)

, (9)

where mR and ΓR are the resonance mass and width, and:

Γ(rR, s) = ΓR

(

mR√
s

)(

p

pR

)2L+1 [ FL

R
(p, rR)

FL
R
(pR, rR)

]2

(10)

where pR is the value of p when s = m2
R
.

C. Parametrization of the S-wave

The goal is to define the S-wave amplitude making no assumptions about either its scalar meson composition, nor
of the form of any S-wave NR terms. To this end, two real parameters are introduced

ck = |C0(sk)| ; γk = φ0(sk) (11)

to define the amplitude C0(sk) = cke
iγk at each of a set of invariant mass squared values s = sk (k = 1, Ns). A second

order spline interpolation is used to define the amplitude between these points (sk, cke
iγk) [28]. The cK and γk values

are treated as model-independent parameters, and are determined by a fit to the data.
To obtain the results in this paper, Ns = 40 equally spaced values of sk are chosen. These are indicated by the

lines drawn on the Dalitz plot in Fig. 1. Other sets of values for sk are also used to check the stability of the results
obtained.

D. Maximum Likelihood Fit

In this analysis, the 3-body mass M is not constrained to be that of the D+ meson. The fits are therefore made in
three dimensions (M, sA, sB). A normalized, log-likelihood function is defined as

L =
∑

events

ln

[(

1 −
3
∑

i=1

fi

)

Ps +

3
∑

i=1

fiP
i
b

]

, (12)

where Ps and P i
b are the normalized signal and background PDF’s, respectively.

Three backgrounds (i = 1, 2, 3), described in Sec. II, are included incoherently in Eq. (12). Each is considered to
constitute a fraction fi of the event sample in the selected range 1.850 < M < 1.890 GeV/c2, and to be described by
the PDF:

P i
b =

Qi(M)θi(sA, sB)

ni
. (13)

This expression has a three-body mass profile Qi(M) and a distribution θi(sA, sB), with normalization ni, over the
Dalitz plot. For the combinatorial background, the PDF is determined by events in a band of M values above the
D+ peak, while for the Ds reflections it is determined from the simulated MC samples.
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The signal PDF is

Ps =
Q0(M)ǫ(sA, sB)|A(sA, sB)|2

∫

dsAdsBdM F (M)ǫ(sA, sB)|A(sA, sB)|2 , (14)

in which Q0(M) describes the shape of the signal component in the K−π+π+ invariant mass spectrum, parametrized
as the sum of two Gaussian functions, and ǫ(sA, sB) is the efficiency for reconstructing these events. The normalization
integral extends over the entire Dalitz plot for each M in the selected range.

E. Decay Channels and Branching Fractions

The amplitude A(sA, sB) in Eq. (3) can be written as a sum over the Nch possible decay channels of the D+:

A(sA, sB) =

Nch
∑

k=1

Ak, (15)

where Ak is the complex amplitude for the kth decay mode for decay to the K−π+π+ final state through either a
resonance, or through the whole set of possible S-wave and NR states. The fraction, Fk, is computed for each such
mode:

Fk =

∫

DP
|Ak|2dsAdsB

∫

DP
|∑i Ai|2dsAdsB

. (16)

This is the definition most often used in the literature on three body decays. It guarantees that each Fk is positive.
Due to interference, however, the Fk do not necessarily sum to unity.

F. Parameters, Phases and Constants

The log-likelihood, Eq. (12), is defined by many parameters. By choice, a number of these are held constant in
the fits. Parameters for the background models P i

b and their fractions fi are determined by studies of data and of
MC samples and are fixed. Masses and widths for well-established P - and D-wave resonances are also held constant
at values listed in Table I. These come mostly from the Review of Particle Properties (RPP) publication [29]. For
the K∗

1 (1680) values appropriate for the state with known coupling to Kπ observed in Kπ scattering in the LASS
experiment [16] are used. The form factor radii are fixed at rD = 5.0 GeV−1 and rR = 1.6 GeV−1, values determined
in Ref. [6] to be those providing the best isobar model description for these data. Isobar coefficients BR and partial
wave amplitude parameters ci and γi are generally allowed to vary.

TABLE I: resonance mass mR and width ΓR values used in the fits described in this paper. With the exception of K∗

1 (1680),
parameters are as quoted in Ref. [29].

Resonance mR (MeV/c2) ΓR (MeV/c2)

K∗(892) 896.1 50.7

K∗

1 (1410) 1414.0 232

K∗

1 (1680) 1677.0 205

K∗

2 (1430) 1432.4 109

Phases are defined relative to the K∗(892) resonance. In all fits described here, the coefficient for the K∗(892) is
taken to be real and of magnitude unity, as explicit in Eq. 7.

Two sources of uncertainty in this method result from the parametrization of the P -wave, and from the fact that
several local minima in the likelihood function exist. These limitations are discussed in more detail in Appendix A.

IV. MIPWA OF THE K−π+ S-wave

The technique described in Section III is applied to the data shown in the Dalitz plot in Fig. 1. The P - and D-wave
amplitudes defined as in Eqs. (7) and (8) are chosen as reference waves. The 40 equally spaced values sk, indicated by
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lines in the figure, are chosen. The S-wave magnitude and phase , ck and γk, at each sk, and the P -wave and D-wave
couplings Bi are all determined by the fit. With all established vector and tensor resonances with masses and widths
shown in Table I, there are 86 free parameters.

It is confirmed that the contribution from K∗

1 (1410) is negligible, as reported in Ref. [6], and this is dropped from
further consideration. The fit is made with the remaining 84 free parameters. The complex coefficients Bi and the
fractions Fi for each of the resonances i included in the P - and D-waves are summarized in Table II. [30]

TABLE II: Fractions, magnitudes and phases for resonant and S-wave components from four fits to decays of D+ mesons to
K−π+π+ described in the text. Fit labels are “MIPWA” for the fit, described in Sec. IV, where magnitudes and phases for 40
K−π+ mass slices described in the text are free to vary. Systematic errors are included for this fit. “Isobar” refers to the fit
described in Sec. V. The fit labelled as “Elastic” is described in Section VI.

Channel Fit Fraction Amplitude Phase
F % b β (degrees)

K∗(892)π+ MIPWA 11.9±0.2± 2.0 1.00 (fixed) 0.0 (fixed)
Isobar 12.6± 1.6 1.00 (fixed) 0.0 (fixed)
Elastic 12.8± 2.0 1.00 (fixed) 0.0 (fixed)

K∗

1 (1680)π+ MIPWA 1.2±0.6± 1.2 1.63±0.4± 0.2 42.8±16.3± 4.5
Isobar 2.1± 0.4 2.18±0.2 28.2± 7.2
Elastic 5.0± 0.8 3.15±0.3 17.1± 7.5

K∗

2 (1430)π+ MIPWA 0.2±0.1± 0.1 4.31±1.0± 1.1 -12.2±23.7± 16.8
Isobar 0.5± 0.1 6.50±0.7 -54.0± 7.4
Elastic 0.3± 0.1 4.59±0.0 -46.9±12.3

Total S-wave:

MIPWA 78.6±1.4± 1.8 EIPWA EIPWA
Elastic 79.2± 1.1 – –

S-wave components:

NR Isobar 16.1± 5.3 0.60±0.1 -3.5± 9.1
κπ+ Isobar 45.6±10.7 1.71±0.2 181.3± 8.1
K∗

0 (1430)π+ Isobar 12.2± 1.3 0.52±0.1 47.0± 5.6

The S-wave phases γk (= φ0(sk)) and magnitudes ck (= |C0(sk)|) resulting from the fit are plotted, with error
bars, in Figs. 3(a) and (b), respectively. A significant phase variation is observed over the full range of invariant mass,
with the strongest variation near the K∗

0 (1430) resonance. The magnitude is largest just above threshold, peaking at
about 0.725 GeV/c2, above which it falls. A shoulder is seen at the mass of the K∗

0 (1430), after which the magnitude
falls sharply to its minimum value just above 1.5 GeV/c2.

The S-wave magnitudes ck obtained depend on the form used for F0
D

in Eq. (3). The products ckF0
D
, and phases γk

are, however, independent of F0
D
. To simplify future comparisons, values for ck, F0

D
and γk for each invariant mass sk

are listed, with their uncertainties, in Table III. In the present analysis, the Gaussian form [27] in Eq. (5) for L = 0
has been chosen. The values used for F0

D
at each sk are also listed in Table III.

The magnitudes |CL(s)| and phases φL(s) for the P - and D-wave amplitudes CL(s) (L = 1, 2) are computed from
Eqs. (7) and (8), using parameters for this fit from Tables I and II. Uncertainties in these quantities are also computed,
using the full error matrix from the fit. Values, at each s, plus or minus one standard deviation are then plotted as
solid curves, with shading between them, in Fig. 3. The P -wave phase and magnitude are shown, respectively, in
Figs. 3(c) and (d), and those for the D-wave in (e) and (f).

To compare the fit with the data, MC simulated samples of events are produced in the three-dimensional space
in which the fits are made. Events are generated with the distribution predicted from the signal and background
PDF’s defined in Eq. (12). Parameter values from Tables II and III, and the measured event reconstruction efficiency
ǫ(sA, sB), are used in the simulation. These events are projected onto the two-dimensional Dalitz plot, and its one-
dimensional invariant mass plots. Data are then overlayed for comparison. These plots are shown in Fig. 4. As a
further comparison, the distributions of the helicity angle θ in the K−π+ systems predicted by the fit are compared
to the data. Fig. 5 shows moments for this angle, (dN/dm)〈PL(cos θ)〉, uncorrected for acceptance.

Qualitatively, agreement between the fit and the data is very good. Quantitative comparison is made using the
observed distribution of events on the Dalitz plot. The plot is divided into rectangular bins. For each of these, the
normalized residual, (nf − no)/σ, where no is the number of events observed, nf is the number predicted by the fit
and σ =

√
nf + no is the uncertainty in nf − no, is computed. The expected population in each bin, nf , is computed

by numerical integration of the PDF in Eq. 12. Neighboring bins are combined, where necessary, to ensure that
nf ≥ 10. The normalized residuals, plotted as an inset in Fig. 4(d), are combined to obtain χ2/NDF where NDF is the
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FIG. 3: (a) Phases γk = φ0(sk) and (b) magnitudes ck = |C0(sk)| of S-wave amplitudes for K−π+ systems from D+ → K−π+π+

decays with the amplitude and phase of the K∗(892) as reference. Solid circles, with error bars show the values obtained from
the MIPWA fit described in the text. The effect of adding systematic uncertainties in quadrature is indicated by extensions
on the error bars. The P -wave and D-wave phases are plotted in (c) and (e) and their magnitudes in (d) and (f), respectively.
These curves are derived from Eqs. (7) and (8), respectively, evaluated with the parameters and error matrix resulting from
the MIPWA. Curves appear as shaded areas representing one standard deviation limits for these quantities. In all plots, the
dashed curves show one standard deviation limits for the predictions of the isobar model fit described in Sec. V. These curves
are computed in the same way, using Eq. (17) in addition to (7) and (8) with parameters and error matrix from the isobar
model fit.

number of bins less the number of free parameters in the fit. These values, and the probability for obtaining them,
are tabulated with the optimum log-likelihood value from the fit, given in Table IV.

V. COMPARISON WITH AN ISOBAR MODEL FIT

It is interesting to compare the results from the MIPWA with those reported in Ref. [6] which came from a Breit-
Wigner isobar model fit. In this fit, the S-wave was modelled as a sum of isobars with Breit-Wigner propagators for
the K∗

0 (1430) resonance, and another κ state. An “NR” term, defined as a constant everywhere on the Dalitz plot,
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TABLE III: Magnitude c and phase γ of the K−π+ S-wave amplitude determined, at equally spaced masses, by the MIPWA
fit described in the text. The magnitudes assume a real form-factor F D

0 for the D+ meson. Values for this form-factor are given
for each mass value in the table. Two further mass values, used in the fit as a result of the finite resolution in 3-body invariant
mass, are not included in the table. They lie, respectively, at and above the kinematic limit for D+ decay to this final state.
Statistical and systematic uncertainties are assigned to each magnitude and phase.

√
s F 0

D(
√

s) c γ

(GeV/c2) (GeV/c2)−2 (degrees)

0.672 0.26 8.37 ± 0.73 ± 0.62 −102 ± 5 ± 3
0.719 0.27 9.04 ± 0.59 ± 0.89 −96 ± 5 ± 3
0.764 0.29 7.82 ± 0.54 ± 0.89 −73 ± 9 ± 4
0.807 0.31 7.42 ± 0.43 ± 0.57 −77 ± 7 ± 5
0.847 0.33 6.47 ± 0.30 ± 0.46 −60 ± 5 ± 6
0.885 0.34 5.57 ± 0.31 ± 0.07 −54 ± 6 ± 5
0.922 0.36 5.90 ± 0.46 ± 0.09 −68 ± 8 ± 7
0.958 0.38 6.17 ± 0.52 ± 0.01 −72 ± 10 ± 9
0.992 0.40 4.87 ± 0.35 ± 0.19 −41 ± 12 ± 10
1.025 0.42 4.42 ± 0.28 ± 0.09 −43 ± 11 ± 5
1.057 0.44 4.02 ± 0.26 ± 0.01 −38 ± 12 ± 5
1.088 0.46 3.74 ± 0.19 ± 0.11 −22 ± 10 ± 4
1.118 0.49 3.81 ± 0.19 ± 0.13 −29 ± 9 ± 4
1.147 0.51 3.16 ± 0.14 ± 0.13 −3 ± 9 ± 4
1.176 0.53 3.21 ± 0.15 ± 0.13 −11 ± 7 ± 3
1.204 0.55 2.86 ± 0.14 ± 0.32 −3 ± 7 ± 3
1.231 0.58 3.11 ± 0.15 ± 0.13 −3 ± 6 ± 2
1.258 0.60 2.92 ± 0.15 ± 0.24 8 ± 6 ± 3
1.284 0.62 2.80 ± 0.16 ± 0.18 11 ± 6 ± 2
1.310 0.65 2.77 ± 0.17 ± 0.12 11 ± 5 ± 2
1.335 0.67 2.83 ± 0.17 ± 0.20 22 ± 5 ± 2
1.360 0.69 2.73 ± 0.19 ± 0.31 31 ± 4 ± 2
1.384 0.71 2.29 ± 0.20 ± 0.25 30 ± 5 ± 2
1.408 0.74 2.38 ± 0.23 ± 0.01 46 ± 4 ± 2
1.431 0.76 2.05 ± 0.28 ± 0.08 55 ± 4 ± 2
1.454 0.78 1.59 ± 0.25 ± 0.07 64 ± 6 ± 4
1.477 0.80 1.33 ± 0.24 ± 0.01 80 ± 10 ± 4
1.499 0.82 1.23 ± 0.24 ± 0.01 74 ± 10 ± 4
1.522 0.84 0.66 ± 0.30 ± 0.27 34 ± 13 ± 21
1.543 0.86 0.57 ± 0.29 ± 0.11 18 ± 16 ± 22
1.565 0.88 0.50 ± 0.30 ± 0.01 22 ± 17 ± 23
1.586 0.90 1.18 ± 0.35 ± 0.01 10 ± 10 ± 14
1.607 0.92 1.35 ± 0.37 ± 0.18 11 ± 10 ± 14
1.627 0.93 1.11 ± 0.37 ± 0.14 19 ± 10 ± 14
1.648 0.95 1.37 ± 0.35 ± 0.01 2 ± 10 ± 14
1.668 0.96 1.82 ± 0.43 ± 0.01 28 ± 8 ± 12
1.687 0.98 1.16 ± 0.40 ± 0.84 8 ± 14 ± 34
1.707 0.99 1.47 ± 0.46 ± 0.01 11 ± 14 ± 21

was also included in the S-wave

C1(s) =
[

NR+BκWκ(s) +BK∗

0
(1430)WK∗

0
(1430)(s)

]

×FL

R
(p, rR). (17)

The P - and D-waves were defined as in Eqs. (7) and (8).
For purposes of comparison, this fit is made again, exactly as before, except that the resonance parameters indicated

in Table I are used to replace those from Ref. [6]. Both the κ and K∗

0 (1430) isobars included in the S-wave in Eq. (17)
have masses and widths that are allowed to vary. The phase convention is defined, as before, by Eq. (7). As found
in Ref. [6], the amplitude and fraction for K∗

1 (1410) are negligibly small. This resonance is, therefore, also omitted
from this fit which is labelled the “isobar fit”. The couplings and fractions obtained are summarized in Table II. It
is seen that the NR term contributes modestly to the decays in this model. Its presence is, however, important as it
interferes with the κ, destructively at K−π+ threshold, not at all at 780 MeV/c2, and constructively at higher mass.
Without the NR term, the S-wave form does not fit the data well. All these results, including Breit-Wigner masses
and widths obtained for the S-wave states, agree well, within uncertainties, with those in Ref. [6].
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FIG. 4: Comparison between MIPWA fit and data for D+ → K−π+π+ decays. For each event, the distributions of (a) the
smaller K−π+, (b) the larger K−π+ and (c) the π+π+ squared invariant masses are plotted as points with error bars. Results
of the fit (solid histogram) are superimposed. (d) The Dalitz plot folded about the axis of symmetry resulting from the identity
of the two π+ mesons. The quantity plotted is the normalized residual (nf −n0)/

√
nf + no defined in the text. The histogram

is the distribution of normalized residual values and the curve is a Gaussian fit to this having mean −0.015±0.039 and standard
deviation 0.93 ± 0.04.

Amplitudes from this fit are plotted in Figs. 3(a)-(f) where they may be compared with the MIPWA results. As
for the MIPWA, Eqs. (7) and (8) are used, this time with parameters for the isobar fit in Table II to compute the
magnitudes |CL(s)| and phases φL(s) for the P - and D-wave, respectively, for L = 0 and 1. Eq. (17) is used in the
same way to compute the S-wave amplitude. Uncertainties in magnitudes and in phases are computed using the full
error matrix from the isobar fit and values at each s, plus or minus one standard deviation, are plotted as dashed
curves, with shading between them, in the appropriate entries in Fig. 3.

The isobar fit constrains the S-wave magnitude and phase to assume the functional forms specified in Eq. (17)
while the MIPWA allows them complete freedom. Because of the additional degrees of freedom, the latter is therefore
able to achieve a better description of the data by a combination of shifts in the P - and D-wave parameters, and
in the (ck, γk) values for the S-wave. The results presented in Figs. 3(a)-(f), and in Table II, illustrate this. Small
differences between the fits in parameters for K∗

1 (1680) and K∗

2 (1430) result in relatively large shifts in the curves
shown in Figs. 3(c)-(f). These changes propagate to the S-wave.
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FIG. 5: Moments of the K−π+ helicity angle θ for the MIPWA fit. In each figure, events are plotted in bins of K−π+ invariant
mass with weights equal to PL(cos θ) as indicated. Two combinations are plotted for each K−π+π+ candidate. Data are
represented as points with error bars. Events are not weighted for their estimated efficiency. The MC events, treated the same
way, are used to show the expectation for these moments from the fit, and are shown as solid histograms.

TABLE IV: Likelihood values for fits to the E791 K−π+ system from D+ → K−π+π+ decays. The fits are described in the
text and are labelled the same way as in Table II.

Model ln(L) Number of NDF χ2/NDF Probability

Variables

MIPWA fit 36121 86 277 1.00 47.8%

Isobar 36072 16 412 1.08 13.2%

Elastic 36092 44 300 0.99 54.9%

Unitary 36004 44 195 2.68 ∼ 0

The shapes predicted by both fits for the S-wave phase and magnitude, are shown in Figs. 3(a) and (b). Some
differences are seen in magnitudes from K−π+ threshold up to about 900 MeV/c2, and in both phase and magnitude
above the K∗

0 (1430) resonance. These effects are correlated with one another and with the differences in the P - and
D-waves noted above. Similar effects are observed in tests made on a large number of MC samples, with sizes similar
to that of the data. Approximately 15% of these samples, generated with the distribution predicted by the isobar
fit, give MIPWA results with similar shifts in P - and D-wave parameters, and in the associated differences in S-wave
observed in the data. The MC tests are discussed in Appendix A.
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The significance of any differences between amplitudes obtained in the two fits is evaluated by comparing their
abilities to describe distributions of kinematic quantities observed in the data. Plots similar to those in Figs. 4 and
5 are made showing similar, excellent agreement between fit and data. Using the method described in the previous
Section, the distribution observed on the Dalitz plot is compared, quantitatively, with that described by the isobar
fit results. A value for χ2/NDF = 1.08 is obtained, and can be compared with χ2/NDF = 1.00 for the MIPWA. These
results are included in Table IV. Differences between the two fits in predicted populations of bins in the Dalitz plot
are all less than their statistical uncertainties. It is evident that both MIPWA and isobar fits are good and that no
statistically significant distinction between these two descriptions of the data can be drawn with a sample of this size.

VI. COMPARISON OF MIPWA WITH ELASTIC SCATTERING

It is interesting to compare the amplitudes CL(s) defined in Sec. III and measured in Sec. IV with those from
K−π+ scattering, TL(s). The relationship between CL and TL is given by Eq. (6). If the K−π+

A
systems produced

in D+ → K−π+
A
π+

B
decays do not interact with the bachelor π+

B
, then the factor PL(s) describes the production of

K−π+ as a function of s from these decays. Also, under the same assumptions, the Watson theorem [21] requires
that, in the s range where K−π+ scattering is purely elastic, PL(s) for each partial wave labelled by L and by iso-spin
I, should carry no s-dependent phase. In other words, φL, the phase of CL(s) for each partial wave, should differ, at
most, by a constant relative to that of the corresponding elastic scattering amplitude TL(s). The magnitudes |CL(s)|
and |TL(s)| could differ, however, due to any s-dependence of the production rate of K−π+ systems in D+ decay.

The validity of the Watson theorem therefore relies on the assumption that no final state scattering between (K−π+
A

)
and π+

B
occurs. This assumption, for decays such as those studied here in which the final state consists of strongly

interacting particles, has often been assumed to hold. However, it has never been objectively tested. The MIPWA
results from the present data provide, therefore, an interesting opportunity to make such a test, and also to examine
the form for the production factor PL(s).

A. K−π+ Scattering

In the S-wave, below Kη′ threshold at 1.454 GeV/c2, K−π+ scattering in both the isospin I = 1
2 and I = 3

2 Kπ
amplitudes is predominantly elastic. Scattering into Kη at a lower threshold is strongly suppressed by the SU(3)flavor

coupling to this channel. This has been confirmed by the LASS collaboration in energy independent measurements
of partial wave amplitudes for K−π+ scattering through, and beyond this range [16]. I = 1

2 components of S-, P -

and D-waves were extracted from the total using measurements of the I = 3
2 scattering from K+ → K+π+n data

Ref. [18]. Scattering in higher angular momentum waves can become inelastic at the lower Kππ threshold. It was
observed, however, that, in the LASS data, P -wave scattering remained elastic up to approximately 1050 MeV/c2.
For the D-wave, no significant elastic scattering was observed.

In the elastic region, the I = 1
2 component of the S-wave K−π+ amplitude was fit, by the LASS collaboration, to

a unitary form

T0(s) = sin[γ(s) − γ0]e
i[γ(s)−γ0], (18)

where the phase γ = γR + γB + γ0 is made up from three contributions:

cotγB = 1
pa + 1

2bp,

cotγR =
m2

R−s
mRΓ(rR,s) ,

γ0 = 0 (arbitrary offset).

(19)

The first is a non-resonant contribution defined by a scattering length a and an effective range b. The second
contribution γR has parameters mR and ΓR, the mass and width of the K∗

0 (1430) resonance. In the LASS analysis,
the arbitrary phase γ0 was set to zero. The I = 1

2 P -wave and D-wave amplitudes measured by LASS were found to
be significant in this invariant mass range.

B. Test of the Watson Theorem

In Figs. 6(a)-(c), direct comparisons are made, respectively, between the S-, P - and D-wave phases determined by
the MIPWA fit to data from this experiment and the I = 1

2 data from LASS. The S-wave phase measurements, and



14

the curves for the P - and D-waves resulting from the MIPWA, previously shown in Fig. 3, are plotted, respectively, in
Figs. 6(a), (b) and (c). The LASS measurements are superimposed, as ×’s with error bars, in the appropriate places
in the figure.
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FIG. 6: Plots show comparisons between results obtained from the MIPWA, described in Sec. IV, for phases of the (a) S-wave,
(b) P -wave and (c) D-wave K−π+ scattering amplitudes with measurements made by the LASS collaboration [16]. Solid circles
in (a) are the phases γk obtained at each invariant mass sk from the MIPWA. The vertical dashed line at the Kη′ threshold
(1454 MeV/c2) indicates the upper limit of the range where K−π+ scattering is predominantly elastic in the S-wave. Solid
curves in (b) and (c) enclose the zones within one standard deviation of the MIPWA P - and D-waves, computed as described
in Sec. IV. Arrows indicate the position of the Kππ threshold, at which K−π+ scattering in the P - and D-waves can become
inelastic. In (b) a further arrow at 1050 MeV/c2 indicates the approximate invariant mass at which the P -wave data from
Ref. [16] were observed to become inelastic. In (d)-(f) the results from the “elastic fit” are shown in place of those from the
MIPWA. In all plots I = 1

2
measurements from the LASS experiment of phases for K−π+ scattering in these waves are shown

as ×’s with error bars indicating statistical uncertainties.

An obvious feature in the comparison is the overall shift in phase of the S-wave in these data relative to that in
the LASS measurements. This feature is also evident from the examination of the K−π+ asymmetry in the Dalitz
plot reported in Sec. II. Another feature of the S-wave comparison is that, for invariant masses near Kπ threshold,
the phases for the two sets of data show a somewhat different dependence on s.

The P -waves also differ in the mass range from the K∗(892) peak, through the region where LASS observed
K∗

1 (1410) scattering to become inelastic, at approximately 1050 MeV/c2. This difference may arise, in part, from the
parametrization of this wave given in Eq. 7. With more than one resonance described by Breit-Wigner propagators,
this may not be unitary. The phase measured in the D-wave in this experiment agrees well with that measured by
LASS. However, as verified by the LASS data, the scattering in this wave is no longer elastic beyond K∗(892)π+

threshold.
The observed shift in S-wave phase and difference in slope, and the difference in P -wave phase behaviour evidenced

in Figs. 6(a)-(c) do not conform to the expectations of the Watson theorem.
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C. Fit with LASS Model for S-wave Phase

Some of the discrepancies noted above could arise from the modelling of the P -wave. A different model could
result in a different dependence on s of the S-wave measured here. To judge the significance of the observed discrep-
ancies, therefore, a fit is made to the data in which the S-wave phase is constrained to precisely follow the LASS
parametrization in Eqs. (18-19) for invariant masses below Kη′ threshold. The mass and width of the K∗

0 (1430) and
the parameters a and b are required to assume the values obtained by LASS. However, the overall phase γ0, all phases
above Kη′ threshold, all magnitudes throughout the entire range of s, and the complex couplings for P - and D-waves
are determined by the fit.

This is labelled as the “elastic fit”. A value γ0 = (−74.4 ± 1.8 ± 1.0)◦ is obtained. The isobar couplings and
resonance fractions obtained are listed in Table II. The K∗

1 (1680) resonance has a more significant contribution to
this fit than in the MIPWA.

The phases obtained for the three partial waves from the elastic fit are compared, in Figs. 6(d)-(f), with those
measured in the LASS experiment. The comparison is shown in the same way as in Figs. 6(a)-(c) for the MIPWA fit.
The shape of the S-wave phase is, as required in this fit, in perfect agreement with the LASS results. However, the
large offset in overall phase, γ0 persists. Additionally, both the P - and D-wave phases now show larger differences
than before. The D-wave phase shifts by ∼ 50◦ , and the P -wave phase shows significant differences in the region
between the K∗(892) peak and the effective limit of elastic scattering at ∼ 1050 MeV/c2.

This fit provides another excellent description of the data, with χ2/NDF = 0.99 and probability 55%, as recorded in
Table IV. This is comparable with both the isobar and MIPWA fits. However, if these observations are predominantly
of production of I = 1

2 K
−π+ systems, the phase variation required by the Watson theorem, is not observed in these

data.

D. Production Rate for the K−π+ System

For purely elastic scattering, the TL amplitudes are required to be unitary, as given by Eq. (18). Introducing this
into Eq. (6) leads to

CL(s) =

(√
s

p

)(PL(s)

pLFL
D

)

×

sin[γ(s) − γ0]e
i[γ(s)−γ0]. (20)

For L = 0

|P0(s)| =

(

p√
s

)( F0
D
|C0(s)|

sin[γ(s) − γ0]

)

(21)

Structure in the s-dependence of the S-wave magnitude, C0(s) can thus come either from the phase γ(s), from P0(s),
or from both. It is of interest to study these possibilities, and to see if the data can be described by a unitary
amplitude, in which P0(s) would be independent of s.

The data from the MIPWA are examined to see if the S-wave can be described by a unitary amplitude, such as
that given in Eq. (20). Setting L = 0 and P0(s) = P (a constant), a value for γ0 is determined by minimizing the
quantity

χ2 =

NKη′

∑

k=1

( |P0(sk)| − P

σ(P0)

)2

, (22)

where |P0(sk)| are computed from Eq. (21), for the values of S-wave amplitude, C0(sk) = cke
iγk , determined by the

MIPWA fit, and σ(P0) are the associated uncertainties. The summation in Eq. (22) is made only for the NKη′ values
of sk up to the K−η′ threshold. The value γ0 = (−123.3 ± 3.9)◦ is obtained, with P = 0.74 ± 0.01 (GeV/c2)−2.
Fig. 3(a) shows that this value for γ0 is approximately equal to the measured S-wave phase at K−π+ threshold,
consistent with the physical meaning of this parameter in the formulation in Eq. (20).

Inserting this value for γ0 into Eq. (21), the quantities |P0sk| are plotted in Fig. 7. The solid, horizontal line indicates
the value for P obtained from the fit. The points are seen to lie close to this line, showing very little dependence
on s in the invariant mass range from K−π+ threshold up to about 1.25 GeV/c2. From 1.25 to 1.5 GeV/c2, strong
variation is observed. In this region, as seen in Fig. 3(a), the value of sin(γ − γ0), which appears in the denominator
of Eq. (21), is approximately zero.
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FIG. 7: The quantities p/
√

(sk) × |C0(sk)| × F0
D/ sin(γk − γ0) plotted as solid circles for each point obtained for the S-wave

amplitude in the MIPWA fit described in Sec. IV. Three points between 1400 and 1450 MeV/c2 are omitted from the plot as
their values for sin(γk − γ0) are very small. Their values are either off-scale or their errors extremely large. The region between
the dashed lines shows the one standard deviation limits of this quantity for the S-wave amplitude obtained from the isobar
fit. The inset shows, as small open circles, the quantities |T0(s)|/ sin(γB + γR) taken from the LASS experiment. The Kη′

threshold is indicated by dashed, vertical lines in both plots.

Also shown in Fig. 7 is |P0(s)| for the isobar fit. The region between dashed lines corresponds to the one standard
deviation limits for this quantity, computed from Eq. (21) with the same value of γ0 as used above. Values for
magnitude and phase of the S-wave amplitude, and their statistical uncertainties, are computed from Eq. (17) with
parameters and error matrix from this fit. The behaviour of |P0(s)| derived from the isobar model fit matches that
observed in the MIPWA points well.

The inset in Fig. 7 shows the corresponding quantities |T0(s)|/ sin(γB + γR) for the points measured for K−π+

scattering in the LASS experiment. From Eqs. (18) and (19) it is seen that this is expected, in the range up to K−η′

threshold, to be unity. It is seen that this condition is met by the LASS data.
It is concluded that the factor |P0(s)| in Eq. (21) that describes production (and possible re-scattering) for K−π+

systems in the D+ decays examined here, shows little dependence on s up to about 1.25 GeV/c2. At this point, a
significant dependence on s is seen. This behaviour is qualitatively different from elastic scattering.

VII. SYSTEMATIC UNCERTAINTIES

The major source of systematic uncertainty in the MIPWA results arises from the difficulty, with a sample of this
size, of reliably characterizing the structures, other than the K∗(892) resonance, in the reference waves. To estimate
this effect, a large number of samples of MC events, each of which is of a size similar to the data (∼ 15K events)
reported here, are examined. These are generated with the parameters determined by the isobar model fit described
in Sec. V, with the backgrounds best matched to the E791 data. Each sample is subjected to a MIPWA fit, and the
differences between generated and fitted values for S-wave magnitude and phase at each of the 40 invariant masses
are examined. For most samples, fits obtained match the isobar model well. Variations in the significance of the
K∗

1 (1680) and K∗

2 (1430) sometimes lead to variations in the reference waves that propagate to distortions in the
S-wave solutions found. These tests provide estimates of systematic uncertainties for the S-wave magnitudes that
range from ∼ 50% of the statistical uncertainty, for invariant masses below 800 MeV/c2, to an insignificant level
for higher masses. For the S-wave phases, the systematic uncertainties are found to average ∼ 72% of the statistical
uncertainty.
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The second largest uncertainty arises from the smearing of events near the high mass boundary of the Dalitz plot
which results from the resolution in three-body massM . This directly affects part of the K∗

1 (1680) band. Events in the
region of M closest to the D+ mass are fitted separately, and the results compared with that from the larger sample.
Average systematic uncertainties arising from the effects of smearing are determined to be 7% of the statistical
uncertainties for magnitudes and 14% of the statistical uncertainties for phases. Other effects are studied. These
include the uncertainty in precise knowledge of the background level, variations in the values assumed for the radii
rR and rD, or for the mass and width for the K∗

1 (1680) resonance. All these other effects are found to be small.
These uncertainties are combined in quadrature and listed for each invariant mass in Table III, and for the reference

wave parameters in the MIPWA fit in Table II.

VIII. SUMMARY AND CONCLUSIONS

A Model-Independent Partial Wave Analysis (MIPWA) of the S-wave K−π+ system is made using the three body
decay D+ → K−π+π+. This is the first time such a technique has been used in studying heavy quark meson decays,
and new information on the K−π+ system is obtained, including the invariant mass range below 825 MeV/c2. The
isospin I of the S-wave measured is unknown, and the P - and D-waves are assumed to be I = 1

2 . It is possible to

modify these assumptions, provided independent information on the I = 3
2 components is available. The method does

not assume any form for the energy dependence of the S-wave. However, it does so for the P - and D- reference waves.
The P -wave is described as the sum of a Breit-Wigner propagator term for the K∗(892) resonance, and a similar
term, with a complex coefficient, for the K∗

1 (1680). The K∗

1 (1410) is found to have an insignificant contribution to
the decays, and is omitted from this wave. The D-wave is described by a single Breit-Wigner term for the K∗

2 (1430)
resonance, with a further complex coefficient. The results obtained in Fig. 3 and Table III depend on the accuracy of
this description of the reference waves.

Results of the MIPWA have been compared with a description of the S-wave amplitude that includes Breit-Wigner
κ, K∗

0 (1430) isobars and a constant, non-resonant (NR) term similar to the description used in Ref. [6]. At the
statistical level of this experiment, differences between the MIPWA and the isobar-model result are not found to be
significant, and both provide good descriptions of the data. A closer examination of the phase behavior in the low
mass region below 825 MeV/c2, the limit of measurements of K−π+ elastic scattering from the LASS experiment [16],
is of great importance to the further understanding of scalar spectroscopy. The data here provide new information in
this region, but the error bars are large compared to those typical for the LASS data. A full understanding of scalar
K* spectroscopy, including an appropriate representation for a possible κ resonance, may need to wait until larger
data samples, and also a better theoretical description of such states, become available.

The phases observed in the S- and P -waves do not appear to match those seen in the I = 1
2 elastic scattering in

reference [16]. The D-wave phase does agree well. Constraining the energy dependence of the S-wave phase to follow
that observed in (I = 1

2 ) Kπ elastic scattering, in the range where s lies below Kη′ threshold, does lead to a good fit
to the data. However, an overall shift in phase of (−74.4 ± 1.8 ± 1.0)◦ relative to the P -wave is still required. This
constraint also results in a shift of approximately −50◦ in the D-wave phase. It also makes agreement in P -wave phase
worse. These results do not conform to the expectations of the Watson theorem which would require phases in each
wave to match, apart from an overall shift, those for K−π+ scattering for invariant masses below Kη′ threshold. The
theorem is expected to apply in kinematic regions where secondary scattering of the Kπ system from the bachelor
pion can be neglected. It is possible that, in this case, such scattering cannot be neglected, or that the K−π+ systems
in D+ decay are not predominantly (I = 1

2 ) [31].
It is also found that, with a choice of phase at K−π+ threshold relative to the P -wave γ0 = (−123.3± 3.9)◦, quite

consistent with that measured in the MIPWA, K−π+ systems produced from D+ decays are described well by a
unitary amplitude (with constant production) up to a mass of about 1.25 GeV/c2. In this region, therefore, structure
observed in the S-wave magnitude is mainly associated with the variation in phase with respect to s. the invariant
mass squared in the K−π+ system. Above 1.25 GeV/c2, the production rate grows, depending significantly on s.
The reason for this behavior is unknown. The growth observed at 1.25 GeV/c2 could result from a significant I = 3

2
contribution or from re-scattering of the produced K−π+ system and the bachelor π+.

The MIPWA analysis of the three-body decay of a heavy quark system described here has three main limitations.
The first results from the way the reference P -wave is described in Eq. (7). Using Breit-Wigner resonance forms for
more than one resonance in the wave can lead to problems in the regions where the resonance tails dominate. The
second limitation comes from the ability to resolve the structure in the K∗

1 (1680) region properly at the statistical
level of the E791 data. This problem may be specific to the channel discussed here, and to the particular data sample
used. The third limitation is the lack of knowledge on any I = 3

2 components in the system.
The first two limitations should be mitigated when much larger data samples are available. A better formulation

for the P -wave could be to use a K-matrix, requiring more parameters. Alternatively, the P -wave, too, could
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be parametrized like the S-wave, in a model-independent way. The third limitation can be improved when larger
samples of K+π+ or K−π− systems can be studied to better understand these waves.

Systematic studies of various heavy quark meson decays in future experiments (BaBar, Belle, CLEO-c, and hadron
colliders), with much larger samples, may be able to use a similar MIPWA technique, with some of these improvements,
to shed further light on important questions in light quark spectroscopy, the realm of applicability of the Watson
theorem, etc. For studies that require an empirically good description of the complex amplitude in three body decays,
for example in the extraction of the γ CP violation parameter recently reported by BaBar and Belle [8, 9, 10], this
technique may also be particularly useful.

In the mean time, theoretical models of the S-wave amplitude can be compared to the data of Table III.
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APPENDIX A: LIMITATIONS AND TECHNICALITIES OF THE METHOD

1. Quality of S-wave Measurements
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FIG. 8: Comparison between fitted S-wave amplitudes (solid circles with error bars representing statistical uncertainties) and
generated amplitudes, represented as shaded regions between dashed curves computed as described in Sec. V. Generated curves
follow the isobar fit model described in Sec. V. The figure shows results from the first six (of 100) samples used in the test.
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The MIPWA analysis of the S-wave component in the observed D+ → K−π+
A
π+

B
decays relies upon a good

description of the reference P - and D-waves.
The P -wave defined in Eq. (7) is a combination of two Breit-Wigner’s (the K∗

1 (1410) is neglected), with a complex
coupling coefficient (two parameters). The peak regions, 0.50 < s < 0.9 (GeV/c2)2 and s > 2.2 (GeV/c2)2, are well
described by this parametrization, since data in these regions are likely to be dominated by these resonances. In the
tail regions, the Breit-Wigner may be a less appropriate description of the data, since other P -wave contributions,
from non-resonant (or I = 3

2 ) sources, for example, could become more significant.

Two regions in the P -wave where the tails of the BW’s dominate are s < 0.50 (GeV/c2)2 and 0.9 < s <
2.2 (GeV/c2)2. In each of these ranges the P -wave is constructed from a linear combination of two small, com-
plex numbers, one from each of the two BW tails. Both the phase and magnitude of the resultant are particularly
sensitive to variations in the complex coupling parameters, and may not represent the P -wave well.

The D-wave is defined in Eq. (8), for this analysis, as a single, L = 2 BW function. Non-resonant contributions
are not expected to be significant, and interference from tails of a second resonance are absent. Eq. (8), therefore,
provides a relatively good description of the D-wave.

Eqs. (2) and (3) show that the amplitude for the decays examined in this paper is a sum of six terms. Let these be
labelled SA, PA and DA (the S-, P - and D-wave, respectively, in the sA channel) and SB , PB and DB (these waves
in the sB channel). The MIPWA process extracts magnitude and phase information about the S-wave SA from its
observed interference with the complex sum of the other five amplitudes.

TA = PA + DA + SB + PB + DB. (A1)

The results expected from measurement of SA can, therefore, be characterized by the dominant terms in TA with
which it interferes, and these depend on location on the Dalitz plot in Fig. 1.

As an illustration, consider measurement of SA in the range 1.1 < s < 2.9 (GeV/c2)2. Here, TA is dominated by
the K∗(892) resonance band in PB (the cross-channel). Good measurements are, therefore, expected in this range.

Next, consider the K∗(892) peak region 1.5 < s < 0.9 (GeV/c2)2. This region has TA dominated by the K∗(892)
peak in PA (the direct-channel). So good measurements are expected here too. A similar conclusion can be drawn
for the K∗

1 (1680) peak region s > 2.9 (GeV/c2)2.
Relatively poor measurements are expected for the other regions since, in these, TA is not dominated by any one

source, and is defined by a linear combination of several Breit-Wigner tails. So TA in these regions has phase and
magnitude that are sensitive to the complex couplings of K∗

1 (1680) and K∗

2 (1430) resonances.
These observations are supported by the results of the MIPWA fit shown in Fig. 3(a) and (b). It is seen that

uncertainties are small for 1.1 < s < 2.9 (GeV/c2)2 and large for s < 0.9 (GeV/c2)2, improving towards the high end.
In the intermediate region, 0.9 < s < 1.1 (GeV/c2)2, the S-wave magnitudes and phases determined in the fit exhibit
significant deviations from the general trends of the neighboring points.

2. MC Studies with Isobar Fit

TheK∗

1 (1680) andK∗

2 (1430) resonances represent small contributions to the Dalitz plot, and statistical uncertainties
in their complex couplings are large enough to affect the P -wave phase, especially in the region between K∗(892) and
K∗

1 (1680), as discussed in Sec. A 1. This can lead to systematic uncertainties in the S-wave amplitudes measured.
MC studies are required to estimate such effects.

MC samples of the approximate size of the data presented in this paper are generated as described by the PDF given
in Eq. (14). Parameters from Table II for the isobar fit described in Sec. V are used for this purpose. Background
events whose distributions are given in Eq. (13) are also generated to match those thought to be present in the data.
Events are selected according to the efficiency ǫ(sA, sB) across the Dalitz plot.

Each sample is subjected to the MIPWA fit described in Sec. IV. In Fig. 8, S-wave amplitudes determined in
the MIPWA for the first six of the 100 samples studied are compared with those used to generate the events. The
amplitudes generated come from the isobar fit, and are shown, as usual, as shaded regions between dashed curves.
Phases are shown on the right and magnitudes on the left. Plots similar to Fig. 3 appear often.

The S-wave amplitudes (cke
iγk) obtained are compared with those generated and, for each k the normalized residuals

are used to determine systematic uncertainties discussed in Sec. VII.

3. Other Solutions

The fitting procedure allows a great deal of freedom to the S-wave amplitude. Consequently, ambiguities in solutions
are anticipated. To study possible ambiguities in the MIPWA solution, fits with random starting values for the ci, γi
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FIG. 9: A second solution for the S-wave amplitude from MIPWA fits to D+ → K−π+π+ decays with P - and D-wave
parametrized by the κ model described in the text. Plots show the (a) phase and (b) magnitude for solution B for the S-wave
obtained by using different starting values for the amplitudes. The dashed curves delineate the regions that lie within one
standard deviation of the isobar model fit described in Sec. V. The P -wave is shown in (c) and (d) and the D-wave in (e) and
(f).

parameters, and also with different K−π+ mass slices are made. One other local maximum in the likelihood is found,
and this is labelled solution B. The solution described in Sec. IV, and shown in Figs. 3(a) through (f), is labelled, for
contrast, solution A. Solution A is the only one with an acceptable χ2/NDF and has the greatest likelihood value. So
it is emphasized that solutions A is, in fact, unique.

Solution B is shown in Fig. 9. It provides a qualitatively reasonable description of the distribution of the data on the
Dalitz plot. However, this solution clearly exhibits retrograde motion around the unitarity circle as K−π+ invariant
mass increases. This violates the Wigner causality principle [32], thus eliminating it from further consideration.

The possible existence of other maxima in the likelihood, when all S-wave magnitudes and phases are free param-
eters, cannot be completely ruled out. However, the solution in Sec. IV is unique in that it is the only one giving an
acceptable fit probability.
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