Including Long-range Interactions in Atomistic Modelling of Diffusional Phase Changes

PDF Version Also Available for Download.

Description

Phase transformations in 2xxx series aluminium alloys (Al-Cu-Mg) are investigated with an off-lattice atomistic kinetic Monte Carlo simulation incorporating the effects of strain around misfitting atoms and vacancies. Vacancy diffusion is modeled by comparing the energies of trial states, where the system is partially relaxed for each trial state. Only a limited precision is required for the energy of each trial state, determined by the value of k{sub B}T. Since the change in the relaxation displacement field caused by a vacancy hop decays as 1/r{sup 3}, it is sufficient to determine the next move by relaxing only those atoms in ... continued below

Physical Description

PDF-file: 19 pages; size: 2 Mbytes

Creation Information

Mason, D R; Rudd, R E & Sutton, A P August 25, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Phase transformations in 2xxx series aluminium alloys (Al-Cu-Mg) are investigated with an off-lattice atomistic kinetic Monte Carlo simulation incorporating the effects of strain around misfitting atoms and vacancies. Vacancy diffusion is modeled by comparing the energies of trial states, where the system is partially relaxed for each trial state. Only a limited precision is required for the energy of each trial state, determined by the value of k{sub B}T. Since the change in the relaxation displacement field caused by a vacancy hop decays as 1/r{sup 3}, it is sufficient to determine the next move by relaxing only those atoms in a sphere of finite radius centered on the moving vacancy. However, once the next move has been selected, the entire system is relaxed. Simulations of the early stages of phase separation in Al-Cu with elastic relaxation show an enhanced rate of clustering compared to those performed on the same system with a rigid lattice. However on a flexible lattice vacancy trapping by Mg atoms in the ternary Al-Cu-Mg system makes clustering slower than the corresponding rigid lattice calculation.

Physical Description

PDF-file: 19 pages; size: 2 Mbytes

Source

  • Presented at: 17th Conference on Computer Simulation Studies in Condensed-Matter Physics, Athens, GA, United States, Feb 16 - Feb 20, 2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-214855
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 878604
  • Archival Resource Key: ark:/67531/metadc879818

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 25, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 29, 2016, 2:54 p.m.

Usage Statistics

When was this article last used?

Yesterday: 1
Past 30 days: 1
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mason, D R; Rudd, R E & Sutton, A P. Including Long-range Interactions in Atomistic Modelling of Diffusional Phase Changes, article, August 25, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc879818/: accessed December 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.