TEMPERATURE DEPENDENCE OF X-RAY-INDUCED PHOTOCONDUCTIVITY IN KAPTON AND TEFLON

R. H. Barlett, G. A. Fulk, R. S. Lee, and R. C. Weingart

July 7, 1975

This paper was prepared for submission to
IEEE Annual Conference on
Nuclear Space Radiation Effects
Humboldt State University, Arcata, CA.

July 14-17, 1975
TEMPERATURE DEPENDENCE OF X-RAY-INDUCED PHOTOCONDUCTIVITY IN KAPTON AND TEFLON

R. H. Barlett, G. A. Fulk, R. S. Lee, and H. C. Weingart
University of California, Lawrence Livermore Laboratory
Livermore, California 94550

Introduction

Radiation-induced conductivity in dielectric materials is usually described by models in which the number of charge carriers is controlled by the kinetics of charge generation, recombination, and trapping. The fitting of experimental data to such models is highly speculative, since many of the parameters in the models can only be guessed. In particular the thermal energy required to release a trapped charge carrier is an important quantity in these models. A study of the temperature dependence of photocconductivity in dielectric materials can provide an estimate of the depth of trapping centers below the conduction level and can provide useful insights into carrier generation and removal processes during the delayed portion of the photoconductivity signal.

We have measured the X-ray-induced photocconductivity in Kapton (Dupont polyimide) and Teflon over the temperature range 100-500°K. The observed temperature dependence of the photocconductivity was strikingly different for these two materials. The qualitative behavior of the Kapton samples was consistent with the predictions of a model where the delayed photocconductivity signal is due to thermal release of trapped charge. In the case of the Teflon samples, the observed prompt conductivity was almost temperature independent and we observed a pronounced peak in the delayed component of the photocconductivity at about 360°K. The decay time of the delayed photocconductivity for Teflon was also observed to be temperature dependent. We discuss changes in the occupation of deep trapping levels as a possible mechanism for the observed thermal quenching of the Teflon photocconductivity.

Experimental Procedure

The method of making the measurements was similar to that used in earlier work1, except that the present apparatus permits the sample temperature to be varied over the range 100-500°K. The samples were heated or cooled by blowing heated or cooled N2 gas over them. The gas was pumped out before the measurements were made and the heat capacity of the sample chamber maintained the sample at a constant temperature while the measurements were made. The inner sample chamber was enclosed in another evacuated chamber, which thermally isolated the inner chamber and gave an additional degree of shielding against electrical noise.

*Work performed under the auspices of the U.S. Energy Research & Development Administration

$Commander, U.S. Navy. Present Address: CDR Gerald A. Fulk, USS Parsons DDG-33 Fleet Post Office, San Francisco, Ca 96601

5Permanent Address: Dept. of Physics, Kansas State University, Manhattan, Kansas
The X-ray source was a Blumlein generator. The X-ray pulse was approximately 40 nsec FWHM in duration, resulting in a dose of 670 rads (air) at the sample position. The X-ray spectrum consisted of characteristic X-ray K lines from the tungsten anode superimposed on a bremsstrahlung spectrum. The peak dose rate was 4.7 x 10^9 rad/sec in Kapton and 9.5 x 10^9 rad/sec in Teflon.

The dielectric samples were made from commercially obtained films of Kapton and Teflon. Electrical contact was made by evaporating 1000Å thick aluminum electrodes onto the samples. The aluminum electrodes were backed by beryllium electrodes. The samples were 0.051 mm in thickness and the irradiated area was 5.6 cm². All surfaces within the sample chamber which were exposed to the X-ray beam were made of beryllium, to minimize charge transfer between the sample and its surroundings.

Results and Discussion

In an earlier paper we considered a trapping model where electrons were excited into a conducting state at a rate g(t), were captured into a shallow trapping level with a rate constant a₁, re-emitted into the conducting state with a rate constant a₂, and trapped into a recombination level with a rate constant a₃. We assumed that the carriers were not re-emitted from the deep level during the time span of the measurement. The charge carrier kinetics for this model are described by the equations

\[
\frac{dn_c}{dt} = g(t) - a_1 n_c (N - n_c) - a_2 n_c (N - n_t) - a_3 n_c (N - n_r)
\]

\[
\frac{dn_t}{dt} = a_1 n_c (N - n_c) - a_2 n_t (N - n_c)
\]

where \(n_c\) is the density of shallow trapping levels, \(n_c\) is the density of conduction electrons, \(n_t\) is the density of trapped electrons, \(N_r\) is the density of recombination centers, \(N_r\) is the number of recombination centers occupied by electrons, and \(N_c\) is the density of conducting states. We assume that the holes produced by the irradiation are immobile.

One of the important parameters in any photoconductivity model is the generation rate of charge carriers. Photoconductivity in insulators is generally characterized by unusually large values of \(E_p\), the absorbed energy per free-carrier pair. \(E_p\) values for insulators up to \(10^6\) eV per ion pair have been reported. The unusually large values of \(E_p\) have been explained by some investigators in terms of geminate recombination. Hughes has shown geminate recombination to be the dominant recombination mechanism in poly-N-vinylcarbazole. The probability that an electron and hole will escape from each other before recombining can be computed from the theory of Onsager, and at low electric fields the escape probability, P, is described by

\[
P = \exp(-e^2/\varepsilon k T_0)(1 + e^3 E/2 k T^2)
\]

where \(e\) is the electronic charge, \(\varepsilon\) is the dielectric constant, \(k\) is the Boltzmann constant, \(T\) is the absolute temperature, \(E\) is the electric field, and \(r_o\) is the initial separation of an electron-hole pair. At room temperature
and below we observe a linear dependence of peak photocurrent on electric field for both Kapton and Teflon. If geminate recombination controls the carrier generation, our data should be in the low-field regime where Eq. (3) applies. Since we observe only a slight temperature dependence for Teflon peak conductivity and essentially no temperature dependence for Kapton peak conductivity below room temperature, we conclude that...ing the time scale of our measurements geminate recombination is not important in the charge generation process.

Kapton:

The transient photoconductivity which is observed during and after pulsed irradiation consists of two components: the prompt conductivity, which occurs during the exciting pulse; and the delayed conductivity, which persists after the exciting pulse has ended. As the temperature is increased, the delayed conductivity of Kapton increases rapidly, but the decay time is relatively independent of temperature, as shown in Figure 1. Below room temperature the delayed conductivity is negligible. The delayed conductivity signal varies exponentially with the reciprocal of temperature, as shown in Figure 2. If the delayed carriers are generated as a result of thermal emission from traps, the data of Figure 2 indicate an activation energy (trap depth) of 0.36 eV. The increase of the prompt conductivity, which is observed above room temperature, appears to be due to the buildup of the delayed conductivity during the radiation pulse. Below room temperature the prompt conductivity is temperature independent.

Some of the parameters in Equations (1) and (2) can be estimated from our experimental data and from the work of other investigators. The mobility, \(\mu \), of the charge carriers is an important quantity, since we can compute the carrier concentration from the measured conductivity if we know the mobility. No measurements of mobility have been reported for Kapton, however, Hughes\(^6\) found the "intrinsic" mobility of charge carriers in Mylar films to be about \(2 \times 10^{-3} \text{cm}^2/\text{v-s} \). At room temperature the peak conductivity of Kapton is \(5.5 \times 10^{-10} \text{(ohm-cm)}^{-1} \), so if we assume that the carrier mobility in Kapton is the same as Hughes measured in Mylar we obtain a peak carrier concentration of about \(2 \times 10^{12} \text{cm}^{-3} \). We chose the generation rate, \(g \), to be a Gaussian function of 10 nsec FWHM normalized to a total excitation of \(10^{14} \text{cm}^{-2} \). This corresponds to an absorbed energy of 160 eV per electron-hole pair.

Our assumed value of mobility puts an upper limit on the values of \(a_1 \) and \(a_3 \), since the Langevin theory places an upper limit of \(4 \mu \text{cm}^2/\text{v-s} \) on diffusion-controlled rate constants. We assume that \(a_1 \) and \(a_3 \) have the largest values consistent with the Langevin theory, i.e., \(a_1 = a_3 = 10^{-3} \text{cm}^3\text{s}^{-1} \).

In thermal equilibrium the rates of capture and emission from the trapping level must be equal, leading to the equation

\[
a_2 = a_1 \left(N_t / N_c \right) \exp(-b/kT)
\]

where \(b \) is the depth of the trapping level below the conduction level. From the temperature dependence of the Kapton delayed conductivity we estimate a trap depth of 0.36 eV. We estimate the trap density, \(N_t \), to be \(10^{18} \text{cm}^{-3} \), the
density of unoccupied recombination levels, \(N_r-n_r\), to be \(10^{16}\) cm\(^{-3}\) and the density of conducting states at room temperature to be \(5 \times 10^{19}\) cm\(^{-3}\). so from Equation (4) we obtain \(2 \times 10^{15}\) cm\(^3\)s\(^{-1}\) and \(10^{17}\) cm\(^3\)s\(^{-1}\) as the value of \(a_2\) at 500°K and 300°K, respectively. The values of \(a_2\) computed using Equation (4) were much too small to give an appreciable delayed conductivity. In order to generate curves which qualitatively look like the experimental data we had to choose values of \(a_2\) in the range \(10^{12}-10^{14}\) cm\(^{-3}\).

Numerical integration of Equations (1) and (2), using the assumed values of the coefficients gives the curves shown in Figure 3. The calculated curves show good qualitative agreement with the data of Figure 1, particularly in their temperature dependence.

The discrepancy between the calculated values of \(a_2\) and the values of \(a_2\) we used to fit the data does not appear to be strongly dependent of the choice of any of the parameters except \(a_1\) and \(N_t\). Since we can estimate the trap depth from our experimental data, we do not regard \(b\) as an adjustable parameter. When we tried to increase the calculated value of \(a_2\) by increasing \(a_1N_t\), we found that the trapping became so strong that the number of carriers became much too small to account for the delayed conductivity unless we assume a much larger mobility.

Although we cannot discount the possibility that we have made a poor choice of coefficients to quantitatively fit the data, the discrepancy may be of a more fundamental nature. One possibility is that the trapping level may be filled directly, rather than by capturing carriers from the conduction level. For example, the trapping level might represent an excited molecular state with dissociation as a possible mode of decay. In the event that there are other means of filling the trapping level than by capture of free carriers, Equation 4 does not apply and the value of \(a_7\) need not be constrained by the value of \(a_1N_t\).

Teflon:

The temperature dependence of the Teflon photoconductivity differs strikingly from that observed in Kapton. The photoconductivity signals from Teflon are shown in Figures 4 and 5. The prompt conductivity is almost independent of temperature and the delayed conductivity increases with temperature to about 360°K and then decreases with increasing temperature.

The observed temperature insensitivity of the peak conductivity in Teflon is probably due to the relative sizes of the delayed and prompt components. The magnitude of the delayed conductivity never rises above the peak room temperature photoconductivity (Figures 4 and 5) so that the delayed part never contributes very much to the peak component. This behavior is to be contrasted to that observed in Kapton (Figure 1) where the delayed conductivity at elevated temperatures is much larger than the room temperature peak component so that substantial contributions to the peak conductivity do occur.

The thermal quenching of the Teflon photoconductivity at elevated temperatures probably arises from temperature-induced changes in the occupation of trapping levels. A model for thermal quenching in a photoconductor has been proposed by Bube where he considers a photoconductor containing a
recombination center with relatively large capture cross sections for both electrons and holes, and a sensitizing center which has a very small capture cross section for electrons and a much larger capture cross section for holes (for n-type sensitization). At sufficiently low temperatures or high excitation intensities, holes tend to build up preferentially in the sensitizing centers, thus increasing the electron lifetime and the photoconductivity. As the temperature is increased, fewer holes occupy the sensitizing centers and more holes reside in the recombination centers, thus decreasing the electron lifetime and quenching the photoconductivity. The model proposed by Bube is not directly applicable to our experimental results, however, because it is a steady state model.

In our experiments the density of carriers produced by the X-ray pulse \((10^{10} \text{cm}^{-3})\) was very small compared to the estimated trap densities \((10^{15} - 10^{16} \text{cm}^{-3})\), so the occupation of the trapping levels would be determined primarily by thermal equilibrium considerations. Under these conditions we look to changes in the equilibrium occupation of the trapping levels to account for the thermal quenching of the photoconductivity. The charge carrier kinetics described in Equations (1) and (2) provide a possible explanation of the observed thermal quenching. The ratio, \(R\), of the two trapping terms in Equation (1) is given by

\[
R = \frac{a_1(N_t - n_t)}{a_3(N_r - n_r)} \approx \frac{a_1N_t}{a_3(N_r - n_r)}
\]

where \(n_r\) and \(n_t\) are the equilibrium densities of electrons in the recombination level and the trapping level, respectively.

As the temperature varies, \(R\) will be dominated by the quantity \((N_t - n_t)\), since \(a_1\) and \(a_2\) will have similar temperature dependences. If the recombination level lies above the Fermi level, \(N_t - n_t\) will decrease with increasing temperature and the rate of electron trapping into the recombination level will decrease. If the recombination level lies slightly below the Fermi level, however, the occupation of the level will decrease and the rate of electron trapping into the recombination level will increase with temperature proportional to

\[
N_r^n - n_r^n = N_r \left(1 + \exp \frac{E_r - E_f}{kT} \right)^{-1}
\]

where \(E_f\) is the Fermi energy and \(E_r\) is the energy of the recombination level. A recombination level lying slightly below the Fermi level could account for the observed decrease in delayed conductivity with increasing temperature. At elevated temperatures a higher proportion of the free carriers produced by the exciting pulse would be trapped into the recombination level and there would be fewer carriers in the shallow traps available for re-emission into the conduction level.
REFERENCES

FIGURE CAPTIONS

Figure 1 - Kapton photocconductivity signal as a function of temperature. The data shown are from digitized oscilloscope traces. To convert the signal to conductivity in (Ω cm)^{-1}, multiply by 4.6(10^{-8}).

Figure 2 - Temperature dependence of the Kapton delayed conductivity signal. Plotted points are signal values (normalized to the same dose) 200 ns after the start of the exciting X-ray pulse.

Figure 3 - Dependence of free carrier density on temperature. The variation of the rate constant α_2 corresponds to a temperature variation from 300-500 K.

Figure 4 - Teflon photocconductivity signal at low temperatures. The data shown are from digitized oscilloscope traces. To convert the signal to conductivity in (Ω cm)^{-1}, multiply by 2.8(10^{-8}).

Figure 5 - Teflon photocconductivity signal at high temperatures. The data shown are from digitized oscilloscope traces. To convert the signal to conductivity in (Ω cm)^{-1}, multiply by 2.8(10^{-8}).
FIGURE 1

BIAS = 40 MV/m

- 486°C
- 462°C
- 429°C
- 415°C
- 396°C
- 295°C

SIGNAL (mV)

TIME (ns)

100 200 300
Figure 2

- BIAS = 40 MV/m

- DENOTES TWO SEPARATE SAMPLES.
FIGURE 5

BIAS = 40 MV/m

SIGNAL (mV)

TIME (ns)

100 200 300

343°K

428°K

448°K

388°K
DISTRIBUTION:

INTERNAL:

R. S. Lee, L-24 (100)
TMD, L-9 (15)

EXTERNAL:

TIC (27)
Oak Ridge, Tennessee