Measurement of the charge asymmetry and the W boson helicity in top-antitop quark events with the CDF II experiment

PDF Version Also Available for Download.

Description

In 1995 the heaviest elementary particle, top quark, was discovered at the Tevatron collider in top-antitop quark pair production. Since the top quark mass is of the same order as the electroweak symmetry breaking scale, measurements of the properties of the top quark like mass, charge, spin or the production mechanism, offer a good opportunity to test the Standard Model at such high energies. Top quarks at the Tevatron are predominantly pair-produced through light quark-antiquark annihilation. Higher order perturbative QCD calculations predict a sizeable asymmetry between the number of top quarks and antitop quarks produced in forward direction. This asymmetry ... continued below

Physical Description

179 pages

Creation Information

Hirschbuehl, Dominic December 1, 2005.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

In 1995 the heaviest elementary particle, top quark, was discovered at the Tevatron collider in top-antitop quark pair production. Since the top quark mass is of the same order as the electroweak symmetry breaking scale, measurements of the properties of the top quark like mass, charge, spin or the production mechanism, offer a good opportunity to test the Standard Model at such high energies. Top quarks at the Tevatron are predominantly pair-produced through light quark-antiquark annihilation. Higher order perturbative QCD calculations predict a sizeable asymmetry between the number of top quarks and antitop quarks produced in forward direction. This asymmetry is induced through radiative corrections. A measurement of the asymmetry can check the perturbative QCD predictions. Due to the high mass of the top quark, nearly the mass of a gold nucleus, the life time of the top quark is much shorter than the hadronization time-scale. This means that the top quark decays before it has a chance to form a bound state. The Standard Model predicts that the top quark decays in nearly 100% of the cases into a W boson and a b quark via a charge-current weak interaction. The measurement of the W boson helicity probes the V-A structure of the weak interaction and differences to the expectation would give evidence for new physics. Until the start of the Large Hadron Collider at CERN, the Tevatron is the only experiment where top quarks can be directly produced and their properties be measured. The Tevatron reaches a center-of-mass energy of 1.96 TeV in proton antiproton collisions. The data used in this analysis were taken in Run II of the Tevatron with the Collider Detector at Fermilab (CDF) in the years 2001-2004 and represent an integrated luminosity of 319 pb{sup -1}. The thesis is organized in the following way: In the first chapter a short overview of the Standard Model is given. The theoretical aspects of the top quark decay are described with particular emphasis on the different helicities of the W boson. The second focus lies on the production process and the higher order QCD effect causing the charge asymmetry. In the following three chapters the experimental techniques of the CDF detector, hardware and the used software are introduced as well as. In this thesis t{bar t} candidates are selected in the decay mode t {yields} bl{nu}, {bar t} {yields} bjj and the charge conjugated state. An important ingredient for this measurement is the complete reconstruction of the top-antitop partonic process. The reconstruction of the partonic process requires the assignment of reconstructed objects, such as jets, the charged lepton and the missing transverse energy to parton level objects. This assignment implies a certain number of possible permutations and ambiguities. To achieve the optimal reconstruction of the event all combinations have to be considered and evaluated. To measure a t{bar t}-quantity one hypothesis has to be chosen. In chapter five we present a novel technique to fully reconstruct t{bar t} events. The technique is investigated in great detail by comparing to the Monte Carlo truth information. In the sixth chapter the background estimation is given. The identification and selection procedure on data is checked with Monte Carlo samples. Chapter seven describes the measurement of the W boson helicity in the top quark decay. The helicity of the W boson is measured via the angle between the W boson momentum in the top quark rest frame and the lepton momentum in the W boson rest frame. After correcting for acceptance and reconstruction effects the different helicity fractions are extracted by fitting the theoretical expected distribution. The systematic error is determined using the technique of pseudo experiments. In chapter eight the measurement of the charge asymmetry in top-pair production is presented. The measurement of the asymmetry is performed by using the difference of the top quark rapidities times the charge of the lepton, to distinguish between top and anti-top quarks. The results and an outlook are given in the last chapter.

Physical Description

179 pages

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: FERMILAB-THESIS-2005-80
  • Grant Number: AC02-07CH11359
  • DOI: 10.2172/897585 | External Link
  • Office of Scientific & Technical Information Report Number: 897585
  • Archival Resource Key: ark:/67531/metadc879799

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • December 1, 2005

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 8, 2017, 2:35 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 16

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hirschbuehl, Dominic. Measurement of the charge asymmetry and the W boson helicity in top-antitop quark events with the CDF II experiment, thesis or dissertation, December 1, 2005; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc879799/: accessed September 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.