Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals

PDF Version Also Available for Download.

Description

The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has caused concerns about global warming. Fossil-fuel-fired power plants contribute approximately one third of the total human-caused emissions of carbon dioxide. Increased efficiency of these power plants will have a large impact on carbon dioxide emissions, but additional measures will be needed to slow or stop the projected increase in the concentration of atmospheric carbon dioxide. By accelerating the naturally occurring carbonation of magnesium silicate minerals it is possible to sequester carbon dioxide in the geologically stable mineral magnesite (MgCO3). The carbonation of two classes of magnesium silicate minerals, ... continued below

Creation Information

Gerdemann, Stephen J.; Dahlin, David C.; O'Connor, William K. & Penner, Larry R. January 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 23 times , with 5 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has caused concerns about global warming. Fossil-fuel-fired power plants contribute approximately one third of the total human-caused emissions of carbon dioxide. Increased efficiency of these power plants will have a large impact on carbon dioxide emissions, but additional measures will be needed to slow or stop the projected increase in the concentration of atmospheric carbon dioxide. By accelerating the naturally occurring carbonation of magnesium silicate minerals it is possible to sequester carbon dioxide in the geologically stable mineral magnesite (MgCO3). The carbonation of two classes of magnesium silicate minerals, olivine (Mg2SiO4) and serpentine (Mg3Si2O5(OH)4), was investigated in an aqueous process. The slow natural geologic process that converts both of these minerals to magnesite can be accelerated by increasing the surface area, increasing the activity of carbon dioxide in the solution, introducing imperfections into the crystal lattice by high-energy attrition grinding, and in the case of serpentine, by thermally activating the mineral by removing the chemically bound water. The effect of temperature is complex because it affects both the solubility of carbon dioxide and the rate of mineral dissolution in opposing fashions. Thus an optimum temperature for carbonation of olivine is approximately 185 degrees C and 155 degrees C for serpentine. This paper will elucidate the interaction of these variables and use kinetic studies to propose a process for the sequestration of the carbon dioxide.

Notes

Publisher - CD-ROM of proceedings

Source

  • 2nd Annual Conference on Carbon Sequestration, Alexandria, VA, May 5-8, 2003; Related Information: In PDF table of contents, title is shown as "Accelerating the Rate of Mineral Carbonation"

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/ARC-2003-018
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 898299
  • Archival Resource Key: ark:/67531/metadc879742

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2003

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 4, 2016, 1:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 5
Total Uses: 23

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Gerdemann, Stephen J.; Dahlin, David C.; O'Connor, William K. & Penner, Larry R. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals, article, January 1, 2003; (digital.library.unt.edu/ark:/67531/metadc879742/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.