

SAND REPORT

SAND2004-0365
Unlimited Release
Printed February 2004

LDRD Report: Parallel Repartitioning for
Optimal Solver Performance

Erik Boman, Karen Devine, Robert Heaphy, Bruce Hendrickson, Mike Heroux, and
Robert Preis

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by

Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any of

their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors. The

views and opinions expressed herein do not necessarily state or reflect those of the United States

Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865)576-8401

Facsimile: (865)576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800)553-6847

Facsimile: (703)605-6900

E-Mail: orders@ntis.fedworld.gov

Online order: http://www.ntis.gov/ordering.htm

2

3

SAND2004-0365
Unlimited Release

Printed February 2004

LDRD Report: Parallel Repartitioning for
Optimal Solver Performance

Erik Boman, Karen Devine, Robert Heaphy and Bruce Hendrickson
Discrete Algorithms and Mathematics Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1111

Mike Heroux
Computational Mathematics and Algorithms Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1110

Robert Preis
Computer Science, Electrical Engineering and Mathematics

University of Paderborn
Warburger Strabe 100
D-33098, Paderborn

Germany

Abstract

We have developed infrastructure, utilities and partitioning methods to improve data
partitioning in linear solvers and preconditioners. Our efforts included incorporation of
data repartitioning capabilities from the Zoltan toolkit into the Trilinos solver framework,
(allowing dynamic repartitioning of Trilinos matrices); implementation of efficient
distributed data directories and unstructured communication utilities in Zoltan and
Trilinos; development of a new multi-constraint geometric partitioning algorithm (which
can generate one decomposition that is good with respect to multiple criteria); and
research into hypergraph partitioning algorithms (which provide up to 56% reduction of
communication volume compared to graph partitioning for a number of emerging
applications). This report includes descriptions of the infrastructure and algorithms
developed, along with results demonstrating the effectiveness of our approaches.

4

5

1 Introduction... 7
2 Parallel Data Redistribution in The Petra Object Model ... 9

2.1 Parallel Data Redistribution ... 9
2.1.1 PDR and Sparse Matrix Calculations.. 10

2.2 An Object-oriented approach to PDR... 10
2.2.1 Communication Classes ... 10
2.2.2 Element Spaces .. 11
2.2.3 Distributed Objects .. 13
2.2.4 Import and Export Operations .. 15
2.2.5 Import/Export Uses .. 15

2.3 Implementation Issues for PDR ... 17
2.3.1 Computing Importers and Exporters... 17
2.3.2 Implementing the DistObject Base Class.. 18

2.4 Parallel Data Redistribution Results... 19
2.4.1 Robust Calculations and Dynamic Load Balancing 19
2.4.2 Epetra-Zoltan Interface .. 20
2.4.3 Partitioning for Highly Convective Flows .. 20

2.5 Conclusions ... 20
3 Distributed Data Directory... 21

3.1 Distributed Data Directory Usage .. 21
3.2 Distributed Data Directory Implementation.. 22
3.3 Distributed Data Directory Functions... 23

4 Unstructured Communication .. 24
5 Multicriteria partitioning and load balancing ... 27

5.1 Introduction ... 27
5.2 Linear partitioning and bisection.. 27
5.3 Multiconstraint or multiobjective? ... 28
5.4 Multiobjective methods ... 29
5.5 Multiobjective bisection... 29
5.6 Implementation in Zoltan... 31
5.7 Empirical results .. 32
5.8 Future work ... 34

6 Hypergraph Partitioning .. 36
6.1 Multilevel Hypergraph Partitioning.. 38

6.1.1 Terminology .. 39
6.1.2 Coarsening Strategies... 40
6.1.3 Augmentation Strategies .. 44
6.1.4 Scaling Strategies... 45
6.1.5 Global (Coarse) Partitioning Strategies .. 45
6.1.6 Refinement Strategies .. 47

6.2 Hypergraph Partitioning Results .. 48
6.2.1 Design of Experiment .. 48
6.2.2 Hypergraph Partitioning in Sandia Applications..................................... 52

6.3 Future Work .. 55
7 Conclusions and Future Work.. 56

6

8 References... 57

7

1 Introduction

The distribution of data across distributed-memory computers significantly affects the
performance of linear solvers. Often, data and work distribution for solvers is dictated
solely by the application as solvers simply use the application’s distribution of the
matrices and vectors. Application developers typically distribute their data with the goal
of minimizing load imbalance and communication costs within the application. Both of
these goals are important for solvers. However, there are other goals that are equally or
even more important, especially for difficult problems. These goals include optimal
grouping of matrix entries for robust preconditioning, and minimizing load imbalance in
the presence of overlapping domains.

In the LDRD “Parallel Repartitioning for Optimal Solver Performance” (FY01-03), we
improved Sandia’s capabilities to effectively partition linear systems for parallel
computation. Our efforts were based in two libraries: the Trilinos solver framework [24]
and the Zoltan parallel data management toolkit [7, 18]. These two libraries are used by
more than a dozen Sandia applications; thus, the technology developed in the LDRD can
have immediate impact across Sandia’s computational science communities.

Trilinos [24] is a common framework for all current and future solver projects. It
provides state-of-the-art, robust, scalable solvers, an object-oriented application
programmer interface (API) for users of algebraic software, and a common set of
software components for solver development. Using Trilinos, application developers can
easily construct and manipulate vectors, matrices and other algebraic objects in a parallel
environment, solve eigenproblems, and solve systems of equations. The Petra linear
algebra services package [25] provides the underlying foundation for all Trilinos solvers.
It includes the fundamental data structures, construction routines and services that are
required for serial and parallel linear algebra libraries, and, thus, was the target package
for development under the LDRD.

The Zoltan toolkit [7, 18] is a general-purpose library providing dynamic load balancing
and related services to parallel applications. It includes graph-based, geometric, and tree-
based load-balancing algorithms. Zoltan serves as a repository for other parallel
technology, including data migration tools, an easy-to-use unstructured communication
package, and a matrix-ordering interface.

The primary goal of our work was to incorporate Zoltan into Trilinos (through Petra) to
allow load balancing to be done at the solver level. Given this capability, optimal
decompositions for linear solvers and preconditioners could be pursued. Toward this
goal, we developed classes and methods within Petra to support parallel data
redistribution. We enhanced Zoltan’s unstructured communication library and Trilinos’
interface to it to allow variable-sized messages within Petra; this capability is necessary
for efficient communication of matrix rows with unequal numbers of non-zeros. We also
developed within Zoltan a distributed data directory to allow efficient location of needed
off-processor data, and developed appropriate Petra interfaces to it.

8

In addition to developing infrastructure in Trilinos for parallel data redistribution, we
developed new partitioning strategies that can be effective for solvers within applications.
We invented a new multi-criteria geometric partitioning strategy that allows the creation
of a single partition that is good with respect to a number of weights per data object.
Examples scenarios where this capability is useful include balancing with respect to
computation time and memory usage and balancing with respect to several phases of an
application (e.g., preconditioning and linear solution). While the multi-criteria geometric
partitioners were not always as effective as multi-criteria graph partitioners, the results
are encouraging and important at Sandia, where many applications prefer to use
geometric partitioners.

We also developed Sandia’s first hypergraph partitioner. By using a more accurate
model of communication, hypergraph models allow more effective partitioning than
standard graph models for highly connected and semi-dense systems. Hypergraph
models also have greater applicability than graph models, allowing effective partitioning
of both non-symmetric and rectangular systems. Our experiments comparing hypergraph
partitioning to graph partitioning on matrices from Sandia application Tramonto [21]
produced up to 56% reductions in communication volume for matrix-vector
multiplication, a key kernel of linear solvers. Design-of-experiment research with our
hypergraph partitioners provided valuable insight into commonly used heuristics and
proved no statistically significant benefit to a number of published strategies. These
efforts laid the foundation for continuing research into parallel hypergraph partitioning.

In this report, we document the research, development and experiments performed under
the LDRD. In section 2, we describe the object-oriented interfaces for parallel data
redistribution implemented in Petra. Sections 3 and 4 describe new capabilities
developed in Zoltan and Petra for distributed data directory services and unstructured
communication. In section 5, we present a new multi-criteria geometric partitioning
algorithm and results comparing its performance to multi-criteria graph partitioners.
Section 6 documents our development of hypergraph partitioning capability in Zoltan and
presents results from design-of-experiment analysis and partitioning of unstructured
matrices from Tramonto. When appropriate, individual sections include directions for
further work.

9

2 Parallel Data Redistribution in The Petra Object Model

Parallel distributed memory matrix and vector computations are critical in many
engineering and scientific applications. Some of the most important capabilities are

1. Construction of matrices, graphs and vectors on a distributed memory machine in
a scalable way using a single global address space;

2. Support of basic computations such as vector updates, dot products, norms and
matrix multiplication; and

3. Redistribution of already-distributed objects in a scalable, flexible way.

A number of linear algebra libraries [2, 3, 53,8] exist to address capabilities 1 and 2.
However, capability 3 is not as commonly available. The Petra Object Model (POM) is
an object-oriented design that supports all three capabilities. Presently there are three
different implementations of POM:

• Epetra: The current production implementation of POM. Epetra is restricted to
real-valued, double-precision data, using a stable core of the C++ language
standard.

• Tpetra: The next generation C++ version. Templates are used for the scalar and
ordinal fields, allowing any floating-point data type and any sized integer. Tpetra
uses more advanced features of C++.

• Jpetra: A pure Java implementation that is byte-code portable across all modern
Java Virtual Machines.

These three implementations provide the foundation for solver development in the
Trilinos Project [24, 26]. In this work, we focus on parallel data redistribution, the third
capability listed above.

2.1 Parallel Data Redistribution

Effective use of distributed memory parallel computers for single program, multiple data
(SPMD) programming typically requires distribution of data that can be thought of as a
single object. For example, in large-scale engineering applications, sparse matrices are
often distributed such that no single processor can directly address all matrix entries.
There is a large degree of flexibility in this data distribution. For the purposes of good
performance, we want to distribute data to balance workloads and minimize
communication costs. For unstructured problems such as finite element methods on
irregular grids and gridless problems such as circuit modeling, finding the optimal
distribution is a nontrivial problem; what may be optimal for one phase of the application
may be suboptimal for another phase. This type of setting leads to the need for parallel
data redistribution (PDR), which we define as redistributing already-distributed data in a
parallel, scalable way.

10

2.1.1 PDR and Sparse Matrix Calculations

The need for PDR shows up in many practical situations when working with sparse
matrices. Probably the most frequent situation is when performing sparse matrix-vector
multiplication. Figure 1 shows a simple example on two processing elements (PEs),
computing w = Ax where the first (last) two rows of A and the first (last) two entries of x
and w are stored on PE 0 (PE 1). One approach to computing w is to have the PE that
owns row i of A compute the ith element of w. Using this approach, PE 0 needs x4 from
PE 1, and PE 1 needs x1 and x2 from PE 0. Thus, each time a matrix-vector
multiplication is performed, a PDR operation is also needed.

11 12 0 14
21 22 0 24
0 0 33 34
41 42 43 44

w1
w2
w3
w4

x1
x2
x3
x4

= *

- On PE 0 - On PE 1

Figure 1 Sparse matrix multiplication on two PEs.

2.2 An Object-oriented approach to PDR

The Zoltan library provides an excellent, easy-to-integrate model for implementing PDR
in an application. In this discussion, we present how that model is extended to an object-
oriented approach. In order to do this, we first introduce the basic classes that we use to
define distributions and create distributed objects.

2.2.1 Communication Classes

The POM uses a collection of three abstract interfaces to support parallel functionality.
By using abstract interfaces, we do not create an explicit dependence on any particular
machine or communication library. The three interfaces are listed below; the UML
diagram in Figure 2 describes their interrelationships.

1. Comm: Supports basic communication operations such as barriers, broadcasts,
and collective operations. Any implementation of this interface is also
responsible for creating compatible instances of the Distributor and Directory
interfaces listed next.

2. Distributor: Supports unstructured all-to-all communication that is commonly
present in calculations where connectivity is described by adjacency graphs. The
distributor has a setup phase that allows it to construct a “plan” for unstructured
communication given a set of processors that each calling processor wants to
communication with. Concrete Distributor instances are created by concrete
Comm instances.

11

3. Directory: Supports the process of locating the owning processor of one or more
global identifiers (GIDs) in an ElementSpace object (see below). This class
facilitates the use of arbitrary indexing on our parallel machine. Concrete
Directory instances are created by concrete Comm instances.

Figure 2: UML Diagram of POM Classes.

2.2.2 Element Spaces

Data redistribution requires the identification of data packets that should be moved as
part of the redistribution. For a simple vector that is distributed across a parallel
machine, the natural packet is a single vector value. For a collection of vectors with the
same distribution, what we define to be a multivector, the natural packet is all values
across a row of column vectors. For matrices, if we store nonzero entries row-by-row,
then the index and nonzero values data are used to define a packet. We can similarly
define a column-oriented matrix, or more generally a compressed index matrix, where the
row or column orientation is part of the definition of the class attributes. A compressed
index graph is similar to a matrix, except that it involves only pattern information. Table
1 lists the common linear algebra objects we use, and describes the packet definition for
each object.

12

Object Packet Definition

Vector Single vector value

Multivector Row of vector values

Compressed Index Storage
Graph (CISGraph)

List of column/row indices for one graph row/column

Compressed Index Storage
Matrix (CISMatrix)

List of values and column/row indices for one matrix
row/column

Table 1: Packet Definition for Various Object Types

To facilitate redistribution and provide a generic analysis capability, we use elements as a
representation of packets. Specifically, regardless of packet definition, we associate an
element GID with each packet of a distributed object. We do this by defining an
ElementSpace object (called a Map object in Epetra). ElementSpace objects are used to

1. Define the layout of distributed object across a parallel machine, and

2. Compute a plan to redistribute an object distributed via one ElementSpace to
another ElementSpace distribution.

Example: Suppose we want to construct a vector with 99 entries so that it is
approximately evenly distributed across four processors, and vector entries are stored in
increasing order. Table 2 lists a natural distribution of element GIDs that would describe
the layout of this type of vector.

Processor ID Element GIDs

0 {0, 1, …, 24}

1 {25, 26, …, 49}

2 {50, 51, … 74}

3 {75, 76, …, 98}

Table 2: Standard Distribution of 99 elements

In our object-oriented model for PDR, we construct a distributed object by first defining
an ElementSpace object. Given an ElementSpace object, we can define any number of
linear algebra objects with a compatible layout. For example, using an ElementSpace
object with the element ID distribution in Table 2, we can define any number of vectors
having the first 25 vector entries on PE 0, the next 25 on PE 1, etc. We can also define a
row matrix having rows 0 through 24 on PE 0, rows 25 through 49 on PE 1, etc.

13

To summarize, ElementSpace objects allow us to specify the desired distribution of any
object for which we can define a packet. Given an ElementSpace object, we can then
construct any number of distributed objects with the prescribe layout. As we will see
below, ElementSpace objects also allow us to support redistribution of existing objects.

Repeated GIDs in ElementSpace Objects

An important property of an ElementSpace object is whether or not the GIDs are listed
more than once. Certain kinds of operations make sense only if each GID is listed once
in the ElementSpace object. In particular, as we discuss below, import and export
operations need one of the two ElementSpace objects to have non-repeated GIDs.

2.2.3 Distributed Objects

A distributed object (DistObject) is any object constructed using an ElementSpace object.
Although data for a given DistObject is kept locally on each processor, a DistObject is
logically a single object and retains extra information, usually in the ElementSpace object
itself, about the state of the object across all processors. In the Petra Object Model, there
are a number of classes that implement the DistObject interface. Doing so requires the
implementation of four virtual methods in the DistObject base class. These methods are
discussed below.

Figure 3 shows the relationship between the major classes in the POM. In particular, it
shows that the MultiVector, Vector (because Vector is a subclass of MultiVector),
CISGraph and CISMatrix are all DistObject classes. In the case of the Vector class, the
implementation of DistObject associates a single vector value with each GID of the
ElementSpace object that describes the vector layout across the parallel machine. Thus,
by implementing the DistObject, each of the concrete DistObject implementations builds
an association between the packet definition (as listed in Table 1) and the GIDs in the
ElementSpace object.

14

Figure 3 Basic Petra class diagram.

15

2.2.4 Import and Export Operations

The primary purpose of the DistObject base class is to facilitate PDR operations in the
POM. We define PDR operations as one of two types:

1. Import: In this case, the calling processor knows which elements of the source
DistObject are needed. For example, when performing row-oriented matrix
vector multiplication, as illustrated in Figure 1, each processor scans the column
entries of the matrix rows that are locally owned. In Figure 1, PE 0 has entries in
the first, second and fourth column. Therefore, PE 0 knows that it needs the
corresponding entries from the x vector. Since each PE knows which elements of
x are needed, an Import object is constructed; each time matrix vector
multiplication is performed, the Import object is invoked to get the elements of x
needed by each processor. Note that in this case, the source x vector must have
non-repeated GIDs in its ElementSpace in order for the Import object to uniquely
identify the needed x values.

2. Export: In this case, the calling processor has contributions to elements that it
wants to send to another processor. For example, when performing matrix
transpose vector multiplication with a row-oriented matrix like the one in Figure
1, we interpret the rows of the matrix as columns of AT. Thus, no communication
is required to get elements of the x vector. However, when the local computation
is completed, each processor may have contributions to the w vector that must be
sent to the appropriate processors. For the matrix in Figure 1, PE 0 has a
contribution to the fourth entry of w, which must be sent to PE 1. PE 1 has
contributions to both the first and second entries of w, which must be sent to PE 0.

2.2.5 Import/Export Uses

Figure 4 shows an Epetra code fragment (part of a working example) that reads in a
matrix (readA), an initial guess (readx), a right-hand-side (readb) and an exact solution
(readxexact) from a data file. The function Trilinos_Util_ReadHb2Epetra creates these
objects and also constructs a map (the Epetra equivalent to an ElementSpace) such that
PE 0 owns all data. Once the data is available on PE 0 (read from file), we create a new
map that has a uniform distribution of elements across all processors. We then create an
Export object that uniformly redistributes any object based on the readMap to all PEs.
Finally we create A, x, b, and xexact, and export data across all PEs.

16

 Epetra_Map * readMap;
 Epetra_CrsMatrix * readA;
 Epetra_Vector * readx;
 Epetra_Vector * readb;
 Epetra_Vector * readxexact;

 // Call routine to read in HB problem. All data on PE 0.
 Trilinos_Util_ReadHb2Epetra(argv[1], Comm, readMap, readA, readx,
readb, readxexact);

 // Create uniform distributed map
 Epetra_Map map(readMap->NumGlobalElements(), 0, Comm);

 // Create Exporter to distribute read-in matrix and vectors
 Epetra_Export exporter(*readMap, map);
 Epetra_CrsMatrix A(Copy, map, 0);
 Epetra_Vector x(map);
 Epetra_Vector b(map);
 Epetra_Vector xexact(map);

 // Distribute data from PE 0 to uniform layout across all PEs.
 x.Export(*readx, exporter, Add);
 b.Export(*readb, exporter, Add);
 xexact.Export(*readxexact, exporter, Add);
 A.Export(*readA, exporter, Add);
 A.FillComplete();

Figure 4 Code fragment for reading file on PE0 and uniformly distributing data
across all PEs.

Import and Export operations can be used with any DistObject (graphs, matrix, etc.).
They can be used to provide elegant implementations of many basic algorithms:

• Parallel matrix and vector assembly for finite element and finite volume
applications – Shared nodes receive contributions from multiple processors; the
reverse operation replicates results back: When assembling a global stiffness
matrix from local element stiffness matrices in parallel, a popular method for
decomposing the domain is the creation of subdomains of elements. In this
situation, multiple processors make contributions to nodes that are shared by
elements on subdomain boundaries. Using export operations, it is possible to
perform the global assembly process by first assembling locally and then
arbitrating the ownership of shared node data via export of matrix rows. This
process is used in the Epetra_FECrsMatrix and Epetra_FEVbrMatrix
classes [25].

• Higher order interpolations – The needed values along subdomain boundaries can
be imported: Higher order interpolations in a distributed memory environment
can require information from nodes that are on the interior of neighboring
subdomains. Import operations can be used to bring those data from neighboring
processors, followed then by completely local calculation of the interpolant.

17

• Ghost node distributions: A more general framework for the above two examples
is ghost node support. In this framework, multiple copies of nodes in a distributed
mesh are maintained. Import and export operations provide an easy way to update
and maintain the synchronization of ghost node data across the parallel machine.

• Rebalancing of changing work loads: As a simulation proceeds, or in different
phases of a simulation, there may be benefit in redistributing already-distributed
objects. Import and export operations make this an efficient and easily expressed
operation.

• Explicit computation of the transpose of a sparse matrix: Use of an export
operation can make forming a distributed transpose of an existing matrix a two-
step process of forming the local transpose, followed by merging of row data
across processors.

• Gradual transformation of a shared memory or serial application to distributed
memory: Starting from a single processor application, export operations can be
used to distribute data from a root processor in order to introduce distributed
computing gradually. As one section of code is confirmed to run well in parallel,
the export can be executed early in the code sequence. Also, this approach is
effective for reading data on a single processor, avoiding parallel I/O, and then
exporting the data for parallel execution.

• Rendezvous algorithms such as the Directory class in the POM: Rendezvous
algorithms support unstructured communication algorithms by adding an indirect
layer of registration and querying much like the alphabetizing of names in a
phone book. Export and import operations facilitate the setup and use of a
directory.

2.3 Implementation Issues for PDR

Following the overview of PDR in the previous section, we now proceed to discuss
implementation issues. In particular, we discuss the internal structure of Import and
Export objects and the details of the DistObject base class.

2.3.1 Computing Importers and Exporters

As mentioned in the previous section, Import and Export objects are constructed using
two ElementSpace objects, which we call the source and target. The source
ElementSpace object represents the layout of objects prior to the PDR operation. The
target ElementSpace object represents the desired layout of objects after the PDR
operation. Table 3 lists the restrictions on the source and target map properties for each
operation.

18

Operation ElementSpace that must
have non-repeated GIDS

ElementSpace that has no
GID restrictions

Import Source Target

Export Target Source

Table 3: Rules for Import and Export ElementSpaces

To construct an Import or Export object, the user passes in a source and a target
ElementSpace object to the Import or Export constructor. The constructor then compares
the GIDs of the source and the target. For the Import operation, the GIDs of the target
are place in one of three categories. For an Export, the GIDs of the source are
categorized. In both cases the categories are

1. Identity mapping: We start comparing the GIDs of the source and target by first
checking if the first and any immediately subsequent GIDs are identical in both
the source and target. We then record how many we found. This test allows us to
efficiently handle the important special case where most of the GIDs in the source
and target are identical. Once we detect a difference in the list of GIDs, we stop
this scan, even if other GIDs in the list may be identical matches.

2. Permuted mapping: After scanning for the initial list of identical GIDs, we then
scan the remaining GIDs in each map to determine if there are GIDs that are in
both the source and target that are local to the calling process. The PDR operation
for these GIDs can be a local memory copy, requiring no communication.

3. Remote mapping: Any remaining GIDs, after the first two categories are
determined, must necessarily be associated with another PE. Thus we form an
instance of the Distributor class to handle the remote communication. This
Distributor object will be invoked whenever an Import or Export operation is
executed.

After an Import or Export object is constructed, it can be used as an input argument for
any Import or Export methods implemented by the concrete DistObject classes such as
CISMatrix, CISGraph or MultiVector.

2.3.2 Implementing the DistObject Base Class

The DistObject base class has four methods that must be implemented by any derived
class. The methods provide the details of the packet definition for the derived class.
Once these methods are defined the DistObject class can perform any necessary
redistribution. The four methods are

1. checkCompatibility: This method allows the implementing class to check if a
source object and a target object are compatible with each other and with the
import or export object that is doing the PDR operation. A detail that we have
left out until now is that, in addition to the DistObject class, the POM has a

19

source-distributed object (SrcDistObject) class that is a base class for DistObject.
In practice, the requirements for an object to be a SrcDistObject are fewer than
the requirements to be a target distributed object. For example, it is possible for
an abstract RowMatrix class to be a source object for the construction of a
CISMatrix that is a redistribution of the RowMatrix object. RowMatrix is an
abstract base class that can be implemented in many concrete ways. It is
conceptually a distributed object and can be queried for row matrix data packets
just like a CISMatrix object. However, it does not make sense to have a
RowMatrix object as a target, since we must construct something concrete for a
target.

2. copyAndPermute: Prior to packing data that will be sent to other processors, we
handle any packets that are copied locally. This step allows us to use export and
import operations as efficient techniques to locally permute data. For best
efficiency, this method must be implemented such that source-object packets are
copied locally if they are to go in either the same location in the target object or
are to be locally permuted.

3. packAndPrepare: This method packs source-object packets in preparation for
the global communication step. Data is packed in a generic form that a general
communication library can redistribute. The basic type is an eight-bit byte. For
example, if the source object were a double precision vector, each double value
would be recast as eight generic bytes.

4. unpackAndCombine: This method is called after data packets have been
redistributed according to the “plan” that was encoded in the Import or Export
object. At this point, the external data is in generic form and must be encoded to
the form that is understood by the target object. Also, if multiple packets
associated with the same GID are received, combining rules must be applied. The
most commonly used combining rule is “Add,” where results are summed
together, but “Max,” “Min,” “Ignore” and “Average” are also allowed.

2.4 Parallel Data Redistribution Results

Given the tools described above, we have made substantial progress on implementing
PDR in applications. In particular, the circuit modeling code Xyce [27] has adopted the
techniques we developed for redistributing data to improve the performance of
preconditioned iterative solvers. We also note that some preliminary studies using the
application Sundance [39] show the importance of PDR for highly convective flows.
Continued work in this area is important.

2.4.1 Robust Calculations and Dynamic Load Balancing

One of the most important uses for PDR is the redistribution of data for robust
preconditioning. Preconditioned iterative methods are an important component in many
applications. Of all phases of computation in a parallel distributed-memory application,
the preconditioner is the only phase whose robustness is impacted by how data is

20

distributed on the parallel machine. Other phases of computation may have imbalanced
loads, but the numerical calculations are essentially unaffected by the distribution of data.
In contrast, most robust parallel preconditioners rely on the locality of data in order to
introduce parallelism into an otherwise sequential algorithm. The data distribution can
make the difference between convergence and divergence.

Even when robustness is not an issue, the layout for optimal load balancing of the
application is often starkly different from an optimal layout for the solver. In this case, it
is also important to consider PDR as a means for improving the load balance for the
solver.

2.4.2 Epetra-Zoltan Interface

In light of the above facts, one of the most important uses for PDR is for determining a
distribution for the preconditioner or for the preconditioned solver, even if that
distribution is different from the rest of the application. To facilitate this, we have
developed an interface between Epetra and Zoltan. This interface provides connectivity
information to Zoltan via an Epetra_CrsGraph object. Given this graph, Zoltan produces
an approximately optimal redistribution; the interface returns this redistribution
information in an Epetra_Export object. Given this Export object, Epetra objects can be
redistributed to the Zoltan-produced distribution. This mechanism has been successfully
used in the Xyce circuit simulation package.

2.4.3 Partitioning for Highly Convective Flows

We mention briefly some studies related to our work. In the thesis by Michael W.
Boldt [6], we see the impact of partitioning on highly convective flows. In these example
problems, developed within the Sundance application [39], we clearly see that
partitioning the problem with respect to streamlines can have a large impact on the
convergence of the linear solver. Determining the proper partitioning for the problems in
this thesis was fairly straightforward because the grids were structured. In future work,
we plan to incorporate the ability to automatically partition with respect to streamlines so
that similar results can be obtained for unstructured meshes and for problems that are
intrinsically discrete.

2.5 Conclusions

We have presented an object-oriented model for parallel data redistribution that is both
flexible and powerful. Using the Petra Object Model, we can deliver qualitative
improvement in robustness and provide a set of tools that make parallel distributed-
memory implementations of many algorithms far more tractable. As part of this effort,
we have developed and incorporated a variety of algorithms to support robust, scalable
computations for unstructured problems on distributed-memory parallel machines. We
have also delivered these capabilities to a broad set of users in the Epetra package (as part
of the Trilinos Project) and in the Zoltan package.

21

3 Distributed Data Directory

Dynamic applications often need to locate off-processor information. For example, after
repartitioning, a processor may need to rebuild ghost cells and lists of objects to be
communicated; it may know which objects it needs, but may not know where they are
located. Similar information is needed to build Import and/or Export maps (see Section
2.2.4). To help locate off-processor data, we developed in Zoltan a distributed data
directory algorithm based on the rendezvous algorithm developed by Pinar and
Hendrickson [45]. Applications can use the data directory to efficiently track processor
ownership and general information about their computational objects. The distributed
data directory avoids communication, storage, and data processing bottlenecks associated
with storing a data directory on a single processor or duplicating a directory on each
processor. Instead, all available processors are used to create one logical data directory,
with all directory information about a specific computational object located on exactly
one processor.

3.1 Distributed Data Directory Usage

General use of the directory is outlined in Figure 5. Processors register their owned
objects’ global identifiers (GIDs) along with their processor number in a directory (by
calling Zoltan_DD_Update). This directory is distributed evenly across processors in a
predictable fashion (through either a linear decomposition of the objects’ GIDs or a
hashing of GIDs to processors). Then, other processors can obtain the processor number
of a given object by sending a request for the information to the processor holding the
directory entry (by calling Zoltan_DD_Find).

22

Allocate memory for distributed directory
(Zoltan_DD_Create)

Register owned objects and/or update
processor assignments of migrated objects.

(Zoltan_DD_Update)

Find processor assignments of needed
objects.

(Zoltan_DD_Find)

Free memory used by distributed directory.
(Zoltan_DD_Destroy)

Figure 5 Outline of distributed data directory usage. Once created,
directories can be updated and re-used throughout an application to reflect,

say, changing processor assignments due to dynamic load balancing.

Because some of Sandia’s parallel computers do not support threads, the distributed data
directory does not use threads. Thus, applications using the distributed data directory
must perform directory operations on all processors at the same point in the application
program, rather than asynchronously. All processors create, update, search and destroy
the data directory simultaneously. Processors having no current data requests must still
participate in directory operations, calling the directory functions with empty GID lists
(NULL pointers).

3.2 Distributed Data Directory Implementation

The distributed data directory is implemented as a Zoltan utility. It is included in both
the Zoltan library libzoltan.a and in its own linkable library libzoltan_dd.a. It depends
upon the Zoltan memory (libzoltan_mem.a) and communication (libzoltan_comm.a)
utilities, but has no dependency on the Zoltan library itself. Thus, applications can use
only the directory capabilities without linking with the entire Zoltan library.

The directory is distributed in roughly equal parts to all processors. A globally known
function is used to map an object’s GID to the specific processor maintaining the
directory information for that object; this function can be a simple linear ordering of
GIDs or a hash function. Messages to insert, update, find, or remove an object’s
directory data are sent to the processor storing the object’s directory entry. Thus, the
rendezvous algorithm requires only O(n) total memory usage for n objects, and all look-
up operations require only O(1) communication.

23

The data directory on each processor is a fixed length table whose entries are pointers to
the heads of singly linked lists. Each node in the linked list contains all of the directory
information for one object: the GID, the current owner (processor number), the current
partition, the local identification (LID), and a user-defined data field. A local hash
function (which must be different from the global hash function) indexes into the table to
find the head of the appropriate linked list. The linked list is traversed to find the object’s
data. If an object’s data is not found, a node is automatically created at the end of the
appropriate linked list for that object’s data.

3.3 Distributed Data Directory Functions

Zoltan implementation

Zoltan_DD_Create initializes the data directory by allocating space for the fixed size
hash table of linked list pointers. The linked lists are created and resized dynamically as
needed.

Zoltan_DD_Destroy frees all memory associated with the distributed data directory.

Zoltan_DD_Update inserts new data into the directory and updates existing data. It can
be used, for example, to update processor and partition assignments after load balancing,
or add new data after adaptive mesh refinement.

Zoltan_DD_Remove is used to remove directory entries for the GIDs in its calling list.
This function is useful, for example, after adaptive mesh coarsening.

Zoltan_DD_Find returns all of the information known about each GID in its calling list.

Zoltan_DD_Set_Hash_Fn allows users to register their own global hash function (to map
objects to processors), if desired. A default hash function is used in the distributed
directory, so use of Zoltan_DD_Set_Hash_Fn is optional. Several additional hash
functions are provided with the distributed data directory; they can be used directly or
serve as templates for user-provided hash functions that take advantage of the user’s
particular naming scheme.

Zoltan_DD_Print prints the entire contents of the directory.

Zoltan_DD_Stats prints a summary of directory information, including the hash table
size, the number of linked lists, and the length of the longest linked list.

Epetra implementation

The Zoltan distributed data directory has been incorporated into Epetra as an
implementation of the Epetra Directory class (see Section 2.2.1). The class
Epetra_ZoltanDirectory has methods Remove, Update, Find, Stats, Print, and SetHash;
these methods call the equivalent Zoltan routines directly. The class constructors and
destructors contain calls to the Zoltan routines to Create and Destroy.

24

4 Unstructured Communication

Unlike static applications where communication patterns remain fixed throughout the
computation, dynamic applications can have complicated, changing communication
patterns. For example, after adaptive mesh refinement, new communication patterns
must reflect the dependencies between newly created elements. Multi-physics
simulations, such as crash simulations, may require complicated communication patterns
to transfer data between decompositions for different simulation phases. Similarly,
applications such as Xyce may use separate decompositions for matrix assembly and
linear system solution, requiring transfer of data between the decompositions.

Zoltan provides an unstructured communication package to simplify communication.
The package generates a communication “plan” based on the number of objects to be sent
and their destination processors. This plan includes information about both the sends and
receives for a given processor. The plan may be used and reused throughout the
application, or it may be destroyed and rebuilt when communication patterns change. It
may also be used in reverse to return data to requesting processors. The package includes
simple communication primitives that insulate the user from details of sends and
receives.

In Figure 6, we show how the communication package can be used to transfer data
between two different meshes in a loosely coupled physics simulation. In this crash
simulation, a static graph-based decomposition generated by Chaco [23] (left) is used for
the finite element analysis; a dynamic Recursive Coordinate Bisection (RCB)
decomposition (right) is used for contact detection. A communication plan is built to
describe data movement between the two decompositions (through a call to
Zoltan_Comm_Create). Using the plan, data is transferred between the graph-based and
RCB decompositions through calls to Zoltan_Comm_Do and Zoltan_Comm_Do_Reverse.

25

Figure 6 Demonstration of Zoltan’s unstructured communication package for
loosely coupled physics. In this example, communication primitives simplify
mapping of data between two different decompositions. (Images courtesy of

Attaway, et al., Sandia National Laboratories.)

Zoltan development

The Epetra’s ability to send and receive variable-sized data packets is important for many
new applications. While matrices arising from finite element simulations have roughly
the same number of non-zeros per row (and, thus, roughly the same size packets for each
object), applications like the Xyce parallel circuit simulator can have widely differing
numbers of non-zeros per row. For example, a system bus in a circuit creates a dense
row in the resulting matrix. Requiring all data packets to use the maximum packet size
results in unacceptable additional memory and communication costs.

Because the Zoltan communication package supports variable-sized data packets, its
inclusion in Epetra as an implementation of a Distributor class (see Section 2.2.1) was
critical to Epetra’s performance. Several enhancements were made in the Zoltan
communication package to support all methods of the Epetra Distributor class. Most
significantly, “post” and “wait” versions of Zoltan_Comm_Do and
Zoltan_Comm_Do_Reverse were added to allow applications to overlap computation and
communication. Users can replace Zoltan_Comm_Do with the new function
Zoltan_Comm_Do_Post (with the same calling arguments as Zoltan_Comm_Do) to
initiate communication, perform computations, and later complete the communication by
calling Zoltan_Comm_Do_Wait (with the same arguments as Zoltan_Comm_Do).
Analogously, the new functions Zoltan_Comm_Do_Reverse_Post and
Zoltan_Comm_Do_Reverse_Wait allow computation to be overlapped with the
communication previously done by Zoltan_Comm_Do_Reverse.

The internal utility function Zoltan_Comm_Sort_Ints sorts messages by processor
number to make the unstructured communication repeatable (deterministic) and sequence
the order of sends and receives to improve throughput. To improve performance, we

Zoltan_Comm_Do

Zoltan_Comm_Do_Reverse

Graph-based decomposition RCB decomposition

26

replaced the quick sort algorithm in this function with the faster distribution count
sort [37].

Epetra Implementation

The Zoltan unstructured communications library was incorporated into Epetra as an
implementation of the Epetra_MpiDistributor class. The class constructor creates a
default class object with an instantiation counter to prevent freeing the Zoltan
communication plan ZOLTAN_COMM_OBJ until the last occurrence is destroyed. The
class destructor uses the instantiation counter to determine when Zoltan_Comm_Destroy
should be called to free the ZOLTAN_COMM_OBJ. The Epetra Distributor class method
CreateFromSends is a shallow wrapper calling Zoltan_Comm_Create to make a
communication plan based on data the processor will export. The class method
CreateFromRecvs creates a communication plan using data the processor will import; it
calls Zoltan_Comm_Create to create a plan and Zoltan_Comm_Do to communicate the
buffer sizes needed to create the inverse plan.The Distributor class methods Do, DoPost,
DoWaits, DoReverse, DoReversePost, and DoReverseWaits call the analogous Zoltan
functions described above. The overloaded methods for Do and DoReverse that accept
variable size messages also invoke Zoltan_Comm_Resize to update packet sizes in the
communication plan. The class method Print calls Zoltan_Comm_Info to print detailed
plan information.

27

5 Multicriteria partitioning and load balancing

5.1 Introduction

Load balancing is important to get good performance in parallel computing. Most work
has focused on the case where there is a single type of load to be balanced. For example,
one may wish to distribute data such that the computational work for each processor is
about the same for all processors. Recently, there has been interest in multicriteria load
balancing, where there are several loads that need to be balanced. The challenge is to
compute a single partitioning (balance) that is fairly balanced with respect to all the
different loads. One practical example is to balance data with respect to both computation
and memory usage. Another example is to partition a sparse matrix both for sparse
matrix-vector multiplication and preconditioning. Yet another application is in multi-
physics simulation, where each phase is different but some data are shared among phases.

Karypis et al. [34, 49] have considered the problem of multiconstraint graph partitioning.
Their algorithm is implemented in version 3 of the ParMETIS library, which has been
integrated into the Zoltan load-balancing toolkit. Many Sandia applications prefer
geometric partitioning methods, like recursive coordinate bisection (RCB) or space-
filling curve partitioning. Our goal in this part of the project is to generalize these
algorithms to multiple criteria. We are not aware of any previous attempts to do this. One
reason little work has been done in this area is that for general problems, there may not
exist any good solutions to the multicriteria partitioning problem for geometric methods.
Thus, the best we can hope for are heuristics that work well on many problems.

5.2 Linear partitioning and bisection

The generic partitioning problem is: Given a set of n data objects (each with a scalar
weight) and a positive integer k, partition the objects into k partitions (subsets) such that
the sum of the weights in each partition is approximately the same. In the geometric
version of this problem, each object also has a set of coordinates in some geometric
vector space, usually R3.

Most geometric partitioning methods reduce the partitioning problem to a linear (or one-
dimensional) problem. For example, a space-filling curve partitioner defines a linear
ordering of the objects and cuts the ordering into k equally sized pieces. Similarly, the
RCB algorithm bisects the geometry perpendicular to only one coordinate axis at a time;
the corresponding coordinate of the objects defines a linear order. Thus, even if the
original partitioning problem has data objects with coordinates in a multidimensional
space (typically R3), we restrict our attention to the one-dimensional partitioning
problem. This problem is also known as chains-on-chains, and has been well studied
[28, 40, 43]. Again, we are unaware of any results for the multiple load case.

28

Although the partitioning problem allows for k partitions, we will focus on the bisection
problem, i.e., k=2. The solution for general k can be obtained by recursively bisecting the
resulting partitions (see Figure 7).

3rd

3rd

3rd

3rd

3rd

2nd

2nd

1st cut

Figure 7 Diagram of cuts made during Recursive Coordinate Bisection
partitioning. Cuts orthogonal to a coordinate axis divide a domain’s work into
evenly sized sub-domains. The algorithm is applied recursively to resulting

sub-domains.

5.3 Multiconstraint or multiobjective?

Traditional optimization problems are written in the standard form: minimize f(x) subject
to some constraints. Hence, handling multiple constraints is easy, but handling multiple
objectives is much harder (i.e., it does not fit into this form). The multicriteria load-
balancing (partitioning) problem can be formulated either as a multiconstraint or a
multiobjective optimization problem. Often, the balance of each load is considered a
constraint, and has to be within a certain tolerance. Such a formulation fits the standard
optimization model, where, in this case, there is no objective, only constraints.
Unfortunately, there is no guarantee that a solution exists to this problem. In practice, we
would like a “best possible” partitioning even if the desired balance criteria cannot be
satisfied. Thus, an alternative is to make the constraints objectives; that is, we want to
achieve as good balance as possible with respect to all the different loads. Multiobjective
optimization is a very hard problem, because, in general, the objectives conflict and there
is no unique “optimal solution.”

There is a vast collection of literature in this area, and we discuss some of the most
popular methods in the next section.

29

5.4 Multiobjective methods

Consider the multiobjective optimization problem

Minimize f(x) s.t. c(x) >= 0,

where both c and f are vector-valued functions. We briefly describe three different
approaches.

a) Weighted sum. This approach is perhaps the simplest. The idea is to form a linear
combination of all the objectives and sum them up into a single objective. More
precisely, if there are d objectives, choose positive weights w1, ... , wd and define
F(x) = w1*f1(x) +...+ wd*fd(x). F(x) can then be minimized using standard methods. The
difficulty with this method is choosing appropriate weights.

b) Pareto optimal set. A set of points is said to be Pareto optimal if, in moving from one
point to another point in the set, any improvement in one of the objective functions from
its current value would cause at least one of the other objective functions to deteriorate
from its current value. The Pareto optimal set yields an infinite set of solutions. One
difficulty with this method is how to choose a solution from the Pareto optimal set. Also,
computing the Pareto optimal set can be expensive. If the problem is convex, one can use
the weighted sum method to compute points in the Pareto set.

c) Global criterion methods. These methods require an estimate of an ideal solution f'.
One then tries to minimize the distance from the ideal solution in some metric. The most
common variation is

,))(/))()((()(min '' p
ii

i
i xfxfxfxg -= Â where typically, p=1 or p=2.

5.5 Multiobjective bisection

In dynamic load balancing, speed is often more important than quality of the solution. We
therefore focus on fast algorithms. The unicriterion (standard) RCB algorithm is fast
because each bisecting cut can be computed very quickly. Computing the cuts is fast
because it requires solving only a unimodal optimization problem. We want the same
speed to apply in the multicriteria case. Thus, we can remove many methods from
consideration because we can’t afford to solve a global optimization problem, not even in
one dimension.

We consider mathematical models of the multicriteria bisection problem. Suppose we
have a set of n data points. Let a1, a2, ..., an be the corresponding loads (weights), where
each ai is a vector. Informally, our objective is to find an index s, 1<= s <= n, such that

ÂÂ
>£

ª
si

i
si

i aa .

30

When each ai is scalar, this problem is easy to solve. One can simply minimize the larger
sum, that is,

max(min s ÂÂ
>£ si

i
si

i aa ,)

However, in the multicriteria case, each ai is a vector and the problem is not well-defined.
In general, there is no index s that achieves approximate equality in every dimension.

Applying the weighted sum method to the formula above yields

†

mins wT max(ÂÂ
>£ si

i
si

i aa ,),

where the maximum of two vectors is defined element-wise and w is some cost vector,
possibly all ones. (The vector w here plays the same role as in the weighted sum method.)
This problem has a reasonable interpretation in load balancing if the jth component of ai

represents the work associated with the ith object and the jth phase. We want to minimize
the total time over all phases, assuming that one phase cannot start before the previous
one has finished. Unfortunately, this problem is hard to solve because the function is non-
convex, so global optimization is required.

Instead, we propose the following heuristic:

max(min s)(),(ÂÂ
>£ si

i
si

i agag)

where g is a monotonically increasing (or non-decreasing) function in each component of
the input vector. Motivated by the global criterion method, we suggest using
either Â=

j

p
jxxg)(with p=1 or p=2, or ||||)(xxg = for some norm. This formulation has

one crucial computational advantage: The objective function is unimodal with respect to
s. In other words, starting with s=1 and increasing s, the objective decreases, until at
some point the objective starts increasing. That defines the optimal bisection value s.
Note that the objective may be locally flat (constant), so there is not always a unique
minimizer.

Example: Suppose we are given a sequence of n=6 items, each with two weights:

 a(1) = (2,2,0,1,2,2) (first weight for the six items)

 a(2) = (2,1,1,1,1,0) (second weight for the six items)

There are five ways to partition this sequence with no empty partition, and we evaluate
the cuts below:

31

s left right 1-norm 2-norm max-norm time

1 (2,2) (7,4) 11 65 7 11

2 (4,3) (5,3) 8 34 5 8

3 (4,4) (5,2) 8 32 5 9

4 (5,5) (4,1) 10 50 5 9

5 (7,6) (2,0) 13 85 7 13

We computed the weight sum vector in the left and right halves, respectively, and the
norms of the larger half. As predicted, the norm sequences are all unimodal. The different
norms have different minimizers. In the 1-norm, there is a tie between s=2 and s=3, while
the 2-norm has a unique minimizer at s=3. In the max-norm, there is a three-way tie. We
also computed a fourth metric called “time” which corresponds to the time a parallel
application would take if the weights were the times for two different phases.

This example shows that the choice of norm may affect the output of the bisection
algorithm. In general, one cannot say one norm is superior. In the example above, all
three norms yield reasonable results.

5.6 Implementation in Zoltan

Zoltan Recursive Coordinate Bisection (RCB) code

We have implemented a version of the algorithm proposed in the section above. Zoltan
contains a fully parallel implementation of RCB. No assumption is made about how the
data is distributed. A core routine in the RCB module is the routine find_median. Given a
distributed set of real numbers, it computes the median value. This median is where RCB
places the cut in the single-criteria case. We have replaced find_median with
find_bisector, which computes a cut value (which we hope is good) for the multicriteria
problem.

32

Serial algorithm:
function bisect(coord, wgt)
lo = min(coord)
hi = max(coord)
while ({lo<coord<hi} not empty)
 cut = (lo+hi)/2
 if (norm(sum(wgt(coord<cut))) < norm(sum(wgt(coord>cut))))
 lo = cut
 else
 hi = cut
end

Figure 8 Serial algorithm for find_bisector.

The actual implementation is more complicated. A dot (data item) is called active if it has
not yet been assigned to a partition, and inactive if it has been. The loop runs until there
are no more active dots.

At present, no attempt is made to find the best cut-directions. The code simply bisects in
the largest dimension of the current geometry. Finding better choices is future work.

Zoltan Recursive Inertial Bisection (RIB) code

The Zoltan RIB routine has been modified in the same way as the RCB routine. An
unresolved question is how to compute the axis of inertia when there are multiple weights
(loads). Currently we only use the first weight for each object to compute the axis of
inertia, but more clever algorithms should be explored in the future.

Scaling issues

While we did not explicitly scale the multidimensional weights (loads) in our algorithm,
scaling is clearly important since the algorithm implicitly compares numbers
corresponding to the different weight dimensions (types of load). We have chosen to
make two types of scaling available: No scaling, or imbalance-tolerance scaling. No
scaling is useful if the magnitude of the different types of weight reflects the importance
of that load type. But in general, little is known about the multi-weights and the natural
scaling is to make all weight dimensions (load types) equally important by scaling the
sum of each weight dimension to one. Since the algorithm above does not take into
account the desired imbalance tolerances, we make a slight modification. We scale the
weights (loads) such that the load types with the largest imbalance tolerance have the
smallest sum, and vice versa. This scaling is the default behavior. Currently the scaling is
performed in find_bisector, but an alternative is to scale only once, not in every level of
recursion in the recursive bisection algorithm.

5.7 Empirical results

We present results from two test examples, both finite element meshes. All computer
simulations were run on a 32-processor Compaq/DEC Alpha machine at Sandia (stratus).

33

The first example, ti_4k, is a 4000-element mesh of a chemical reactor from
MPSalsa [50, 51] with two weights per element (d=2). The first weight is one for each
element; the second weight corresponds to how many sides (surfaces) of an element have
no neighbors (i.e., are on the external surface). Such a weighting scheme is realistic for
contact problems. (We did not have access to real data for contact problems.)

We partitioned this mesh into k=9 parts using our multicriteria RCB code and compared
against ParMETIS. Results are shown in Table 4. BALANCE[i] is computed as the
maximum processor load for weight i divided by the average processor load for weight i,
i=0,…,d-1. We observe that there is little difference between the multicriteria RCB
algorithms with different norms. The balances are not quite as good as ParMETIS, which
was expected since the RCB cuts are restricted to orthogonal planes. Still, the
multicriteria RCB algorithm produces reasonable load balance for this problem, and in
less time than ParMETIS. For comparison, we include the results for d=1; i.e., only the
first set of weights are used. The edge cuts are the number of edges that are cut between
partitions in the graph model, which approximately corresponds to the communication in
a parallel code. The RCB algorithm does not use any graph information, while ParMETIS
does.

k=9 RCB
(d=1)

RCB
(d=2,norm=1)

RCB
(d=2,norm=2)

RCB
(d=2,norm=max)

ParMETIS
(d=2)

BALANCE[0] 1.00 1.06 1.06 1.06 1.01

BALANCE[1] 1.15 1.08 1.08 1.01

Edge Cuts 1576 1474 1488 1488 1462

Time 0.09 0.10 0.15 0.11 0.23

Table 4 Results comparing balance, edge cuts, and computation time using
multicriteria RCB and ParMETIS for the ti_4k finite element mesh.

The second test problem is brack2_3. Brack2 is a 3D mesh for a brackish water area with
62,631 nodes. The version we used has 3 weights per node (d=3). These weights were
artificially generated by Schloegel and Karypis while testing the multiconstraint feature
in ParMETIS [49]. Results for k=4, 8, and 16 partitions are shown in Table 5. From
these results, we see that the load balance for RCB deteriorates rapidly with increasing
number of partitions k. Again, ParMETIS does better. We also note that there is little
difference between the RCB variations with different norms; in fact some produce
exactly the same results.

More experiments are needed to draw firm conclusions, but it looks as if the multicriteria
RCB algorithm is useful only for small numbers of partitions k; for larger k, the
imbalance grows too large. The RCB method is very competitive in terms of cut quality
and execution time.

34

k=4 RCB
(d=1)

RCB
(d=3,norm=1)

RCB
(d=3,norm=2)

RCB
(d=3,norm=max)

ParMETIS
(d=3)

BALANCE[0] 1.00 1.21 1.21 1.21 1.1

BALANCE[1] 1.21 1.21 1.21 1.1

BALANCE[2] 1.14 1.14 1.14 1.04

EDGE CUTS 16540 18548 18548 18548 12198

TIME 0.23 0.26 0.25 0.26 1.1

k=8 RCB
(d=1)

RCB
(d=3,norm=1)

RCB
(d=3,norm=2)

RCB
(d=3,norm=max)

ParMETIS
(d=3)

BALANCE[0] 1 1.64 1.64 1.53 1.08

BALANCE[1] 1.29 1.29 1.34 1.09

BALANCE[2] 1.43 1.43 1.34 1.04

EDGE CUTS 22650 26882 26882 23710 22796

TIME 0.31 0.31 0.25 0.24 0.91

k=16 RCB
(d=1)

RCB
(d=3,norm=1)

RCB
(d=3,norm=2)

RCB
(d=3,norm=max)

ParMETIS
(d=3)

BALANCE[0] 1 1.78 1.78 1.43 1.08

BALANCE[1] 1.52 1.52 1.74 1.08

BALANCE[2] 1.5 1.5 1.53 1.09

EDGE CUTS 33574 36414 36414 32756 37910

TIME 0.22 0.32 0.25 0.25 1.04
Table 5 Results comparing balance, edge cuts, and computation time using

multicriteria RCB and ParMETIS for the brack2_3 graph.

5.8 Future work

Our bisection algorithm has so far been implemented only in RCB and RIB, but it applies
equally well to space-filling curve partitioning. However, the code would need to be
substantially modified because the data structures and the parallel distribution are
different.

At present, a crude rule is used to decide the cut directions in RCB: the cut direction is
selected to be orthogonal to the longest direction in the geometry. Cut directions are
much more important for multicriteria partitioning than standard partitioning. A simple
improvement is to try all three dimensions and pick the one giving the best results. We
plan to implement this improvement in the next fiscal year.

RCB is restricted to cutting along the coordinate axes, while RIB is not. A natural
question is how much better one can do if one is allowed to choose an arbitrary cutting

35

plane at every step. There is an interesting theoretical result, known as the Ham
Sandwich Theorem [52]:

Given n solid bodies in Rn, there exists a (n-1)-dimensional hyperplane that
simultaneously bisects (exactly) all n bodies.

A popular interpretation for n=3 follows: If you take a sandwich with ham and cheese on
bread, it is possible to slice it such that each half contains exactly the same amount of
bread, ham, and cheese.

The Ham Sandwich Theorem implies that a set of points in Rn, each with a n-dimensional
binary weight vector, can be cut by a (n-1)-dimensional hyperplane such that the vector
sum in the two half-spaces differs by at most one in each vector component. A linear time
algorithm exists for n=2, and some efficient algorithms exist for other low
dimensions [38].

36

6 Hypergraph Partitioning

Graph partitioning is generally accepted as one of the most effective partitioning strategies
for mesh-based PDE simulations. In graph partitioning, vertices represent the data to be
partitioned (e.g., finite element nodes, matrix rows). Edges represent relationships between
vertices (e.g., shared element faces, off-diagonal matrix entries). Thus, the number of edges
that are “cut” by partition boundaries approximates the volume of communication needed
during computation (e.g., flux calculations, matrix-vector multiplication). Both vertices and
edges can be weighted to reflect associated computation and communication costs,
respectively. The goal of graph partitioning, then, is to assign equal total vertex weight to
processors while minimizing the weight of cut edges.

It is important to note that the edge-cut metric is only an approximation of an application’s
communication volume. For example, in Figure 9 (left), a grid is divided into two partitions
(separated by the red line). In the graph model, grid point A has four edges associated with
it; each edge (shown in blue) connects A with a neighboring grid point. Two of the edges are
cut by the partition boundary; however, the actual communication volume associated with
sending A to the neighboring processor is only one grid point.

Nonetheless, there are countless examples of successful uses of graph partitioning in mesh-
based PDE applications like finite element methods and the sparse iterative solvers. These
successes have led to the development of many high quality serial and parallel graph
partitioning tools (e.g., Chaco [23], METIS [35], Jostle [54], Party [47], Scotch [42],
ParMETIS [32]). The Zoltan library includes interfaces to ParMETIS and Jostle to provide
parallel, dynamic graph partitioning.

While graph partitioners have served well in mesh-based PDE simulations, many new
simulation areas such as electrical systems, computational biology, linear programming and
nanotechnology show the limitations of these algorithms. Critical differences between these
areas and mesh-based PDE simulations include high connectivity, heterogeneity in topology
and matrices that are non-symmetric or rectangular. The examples in Table 8 and Table
9 include the non-zero structure of matrices representative of these new applications; it is
easy to see the vastly different structure of these matrices compared to a traditional finite
element matrix (Table 7). Current technology based on graph partitioning does not address
these problems well. Hypergraph partitioning models [14], on the other hand, show great
promise in helping these applications achieve high performance scalability.

As in graph models, hypergraph vertices represent the work of a simulation. However,
hypergraph edges (hyperedges) are sets of two or more related vertices (see Figure 9). The
number of hyperedges cut by partition boundaries is an exact representation of
communication volume, not merely an approximation as in graph models [14]. In the
example in Figure 9 (right), a single hyperedge (shown in blue) including vertex A and its
neighbors is associated with A; this single cut hyperedge accurately reflects the volume of
communication associated with A.

37

Catalyurek and Aykanat [14] also demonstrated the greater expressiveness and applicability
of hypergraph models over graph models. Graph models imply symmetry in all relationships,
making them appropriate only for problems that can be represented by square, symmetric
matrices. Hypergraph models do not imply symmetry in relationships, allowing both non-
symmetric and rectangular matrices to be represented. For example, in Figure 10, the
vertices of a hypergraph (right) represent rows of a rectangular matrix (left). Each matrix
column is represented by one hyperedge connecting all non-zero values in the column. For a
two-processor, row-based matrix decomposition (indicated by red and blue), colored
hyperedges represent local operations in matrix-vector multiplication, while black
hyperedges require interprocessor communication.

A A

Figure 9 Example of communication metrics in graph partitioning (left) and
hypergraph partitioning (right). Edges are shown in blue; the partition boundary

is shown in red.

1 2

3

45

6

y * * x
y * * x
y = * * x
y * * * x
y * * x
y * * *

Figure 10 Representation of a rectangular matrix (left) by a hypergraph (right).
Matrix rows are represented by hypergraph vertices. Each matrix column is
represented by one hyperedge connecting all non-zero values in the column.

Hypergraph partitioning’s effectiveness has been demonstrated in a number of areas. It has
been used for decades for VLSI layout to put devices into clusters with minimal inter-cluster
connections [10]. It has been used effectively for sparse matrix decompositions [14, 5]. It is
an important technology in database storage and data mining [15, 41]. Several serial
hypergraph partitioners are available (e.g., hMETIS [29], PaToH [13], Mondriaan [5]).
However, no parallel hypergraph partitioners exist. Parallel partitioning is needed for two
reasons. First, very large data sets (such as those used in most Sandia applications) can
overwhelm the capabilities of serial partitioners; parallel hypergraph partitioners can be used
to statically decompose such data sets. Second, adaptive simulations require repartitioning to

38

redistribute work as processor workloads change; this partitioning must be done in parallel to
maintain application scalability.

6.1 Multilevel Hypergraph Partitioning

As a precursor to parallel hypergraph partitioning, we have developed a serial hypergraph
partitioner in Zoltan. The hypergraph partitioner includes generalizations of many
algorithms used in graph partitioners. It uses a multi-level algorithm [22], in which a
hypergraph is coarsened into successively smaller hypergraphs by some form of vertex
matching. A global optimizing algorithm partitions the smallest hypergraph. The coarse
decomposition is then projected back to the larger hypergraphs, with Fiduccia-
Mattheyes [20] local optimization used to reduce hyperedge cuts while maintaining balance
at each projection.

The coarsening phase uses reduction methods that are variations on graph matching
algorithms adapted to hypergraphs. There are three types of reduction methods: matching,
packing, and grouping. All reduction methods select a set of vertices and combine them into
a single, “larger” vertex. In hypergraph matching, a pair of connected vertices is replaced
with an equivalent vertex; the new vertex’s weight, connectivity, and associated hyperedge
weights are computed to reasonably represent the original pair of vertices. Packing reduction
methods replace all vertices connected by one hyperedge with an equivalent vertex.
Grouping reduction methods replace all ungrouped vertices connected by a single hyperedge
with an equivalent vertex. Packing differs from grouping because a hyperedge is packed
only if no vertices in the hyperedge have been selected for packing in an overlapping
hyperedge; grouping allows unselected vertices in the hyperedge to be grouped.

Optimal matching, packing and grouping algorithms are typically very time consuming; they
either have run-times that are O(high-degree polynomial) or are NP-complete. Thus, fast
heuristics are used to compute good results. We implemented several fast approximation
algorithms for these tasks, but the results of the heuristics may lack local optimality structure.
Therefore, an optional augmentation algorithm may be applied at the end of the matching,
packing, or grouping algorithm to improve the result. Augmentation algorithms improve
hypergraph matching, packing or grouping reductions by finding alternative reductions with
higher hyperedge weights. Augmentation may remove existing reductions and replace them
with alternative ones.

Reduction typically proceeds until the number of coarse vertices equals the number of
desired partitions. On some difficult problems, however, it can be more time efficient to
terminate the reduction process sooner because only a small fraction of the vertices are being
successfully matched/packed/grouped.(Nominally, a matching should pair nearly half of the
vertices at each level.) In these cases, coarsening is stopped when it produces less than 10%
reduction in the number of vertices compared with the parent hypergraph. In addition, a user
parameter HG_REDUCTION_LIMIT may be used to set the number of vertices at which the
reduction process is stopped. Use of this parameter allows greater flexibility in partitioning
the coarsest hypergraph. The coarsest hypergraph is then partitioned. If the coarsest
hypergraph has the same number of vertices as the number of requested partitions, each

39

vertex is trivially assigned to a partition. Otherwise, a global optimizer (using greedy
partitioning) establishes the coarse-hypergraph partition.

After the coarse-hypergraph partition is computed, the coarse partition is projected onto the
successively finer hypergraphs. A coarse vertex’s partition assignment is given to each of
the fine vertices that were reduced into the coarse vertex. At each projection, a variation of
the Fiduccia-Mattheyes [20] optimizer reduces the hyperedge cut weight while maintaining
(or establishing) partition load balance. The local optimizer generates only two partitions
(k=2). For k>2, the entire hypergraph partitioner is applied recursively. We also
implemented a greedy direct k-way local optimizer, but it is currently much weaker than the
recursive approach; that is, it results in a considerably larger number of hyperedge cuts than
the recursive approach. Currently, we are implementing a direct k-way local optimizer based
on Kernighan-Lin [36] and Fiduccia-Mattheyes [20]; this approach has the advantage of
directly operating on k partitions, with the disadvantage of being a much more complicated
strategy than improving a bisection.

6.1.1 Terminology

neighbor vertex: a vertex sharing a hyperedge with a given vertex.

normal vertex (hyperedge) order: The order vertices (hyperedges) are stored in the
hypergraph data structure; initially, this order reflects the order in which vertex (hyperedge)
data was received from the application. If no ordering is specified, normal order is assumed.

pins: Connections between vertices and hyperedges; given a bipartite graph with vertices on
one side and hyperedges on the other, the edges connecting a hyperedge with its vertices
represent pins. This nomenclature comes from the electronic circuit community where it
corresponds to the physical pins of the components.

|e|: Hyperedge size; i.e., the number of vertices in hyperedge e.

†

e max = max
all edges e

(e)

|Hyperedges|: Total number of hyperedges in a hypergraph.

|Vertices|: Total number of vertices in a hypergraph.

†

Pins = e
all edges e

Â

w(e): hyperedge weight; a weight assigned to a hyperedge. Unit weights are used if no
weights are given by the application. During coarsening, identical hyperedges are combined
by summing their weights.

w(v): vertex weight; a weight assigned to a vertex. Unit weights are used if no weights are
given by the application. During coarsening, matched vertices’ weights are summed to
compute the coarse vertex’s weight.

40

k: number of partitions.

6.1.2 Coarsening Strategies

The following reduction algorithms produce maximal matchings in the sense that for
matching algorithms, there are no unmatched vertices that share a common hyperedge; for
packing algorithms, there is no hyperedge with all vertices unmatched; and for grouping
algorithms, there is no hyperedge with more than one unmatched vertex. There may be many
distinct maximal matchings, packings, and groupings for the same hypergraph. In graphs, a
maximal matching is also at least a 1/2-approximation of a maximum cardinality matching
(i.e., the solution cardinality is at least one-half the cardinality of the maximum cardinality
matching). Another useful approximation is the ratio of the minimum sum of matched
(graph) edge weights to the maximum weight matching. We have begun to extend these
concepts from graphs to hypergraphs [48]. When a maximum weight matching
approximation is known for an algorithm, it is indicated below.

Matching Reductions

MXM (maximal matching): MXM is a hypergraph version of the graph maximal matching
algorithm. It visits all vertices in normal vertex order. If a vertex is unmatched, it becomes
the current vertex. The vertices of the current vertex’s hyperedges are visited until an
unmatched neighbor vertex is found. The neighbor vertex is matched to the current vertex,
and the algorithm advances to find the next current vertex. MXM runs in O(|Pins|) time.
This method is the simplest, most intuitive matching algorithm. However, it is highly
dependent on the normal order of the vertices. It works surprisingly well for circuit
problems where the vertices and hyperedges provided by circuit codes (e.g., Xyce [27]) are
inherently well-ordered. For other (non-circuit) hypergraphs, this method is weak.

REM (random hyperedge matching): REM is a hypergraph version of the random edge
graph-matching algorithm. The algorithm randomly visits all hyperedges. For each
hyperedge, it visits each hyperedge vertex to find pairs of unmatched vertices. When two
unmatched vertices are found, they are matched together, and the search for more unmatched
pairs in the hyperedge continues. After all vertices in the current hyperedge are examined,
the algorithm advances to the next random hyperedge. REM runs in O(|Pins|) time. This
algorithm uses randomization to reduce the sensitivity of the algorithm to the normal
ordering of hyperedges.

RRM (random, random matching): RRM randomly visits all vertices. If the current vertex
is unmatched, RRM visits all hyperedges containing the vertex to find unmatched neighbor
vertices. From all unmatched neighbors of the current vertex, RRM randomly selects one
unmatched neighbor and matches it with the current vertex. The algorithm then advances to
the next random vertex. RRM runs in O(|Pins| * |e|max) time. This algorithm uses
randomization to reduce the sensitivity to orderings of both vertices and hyperedges.

RM2 (random, random matching, version 2): RM2 is similar to RRM except that only the
unmatched neighbor vertices in the lightest weight hyperedge (hyperedges in case of ties) are
considered for matching. The idea is to keep highly localized circuit elements (here

41

represented by light hyperedges) together during the coarsening phase and thus to force
splitting circuits between blocks of circuit elements (represented by heavy hyperedges).
Although this strategy should produce a poor graph partitioning algorithm, it yielded
unusually good partitioning results for circuit problems when we used it with the
augmentation algorithm aug2. The other matching, packing, and grouping algorithms whose
name ends in a number were further experiments along this line. RM2 runs in
O(|Pins| * |e|max) time.

GRM (greedy random matching): GRM is a hypergraph version of the greedy graph-
matching algorithm. GRM sorts the hyperedges in decreasing order by weight and, in case of
ties, by decreasing hyperedge size. The hyperedges are then visited in sorted order. All of
the vertices in the current hyperedge are visited. As two unmatched vertices are found, they
are matched together. The need to sort makes this algorithm slower than the previously
described reduction methods. It runs in O(|Pins|+ |Hyperedges| * log(|Hyperedges|)) time
and is a 1/2-approximation to the maximum weight matching.

GM2 (greedy random matching, version 2): GM2 is similar to GRM except that the
hyperedge weights are sorted in increasing order (and increasing hyperedge size, in case of
ties). This modification is intended to partition circuits between blocks of circuit elements
rather than through the blocks. GM2 runs in O(|Pins|+ |Hyperedges| *log (|Hyperedges|))
time.

GM3 (greedy random matching, version 3): GM3 is similar to GRM except that the
hyperedge weights are sorted by the ratio of hyperedge weights to hyperedge size.
Hyperedges are visited by decreasing weight/size ratio. GM3 runs in O(|Pins|+
|Hyperedges| *log(|Hyperedges|)) time.

GM4 (greedy random matching, version 4): GM4 is similar to GM3 except that the
hyperedge weight-to-size ratios are sorted in increasing order. GM4 runs in
O(|Pins|+|Hyperedges| * log(|Hyperedges|)) time.

LHM (local heavy matching): LHM is a locally heavy edge-matching algorithm based on
Preis’ linear-time 1/2-approximation graph matching algorithm (LAM) [46]. LHM begins by
converting the hypergraph to a graph by creating a graph clique for each hyperedge; the
weight of hyperedge e is distributed to the resulting graph edges so that each graph edge has
weight equal to 2 w(e) / (|e|2 – |e|). This conversion makes LHM slower than LAM and most
other hypergraph reduction methods.

LHM starts with an empty set of matched (graph) edges. Starting from an unmatched vertex
in normal vertex order, the edges containing this vertex are searched in normal order to find
an unmatched edge (i.e., an edge with two unmatched vertices), which becomes the current
edge. LHM begins a backtracking search for adjacent edges with a higher weight. That is, it
looks at the current edge and each neighboring edge (i.e., an edge sharing a vertex with the
current edge) and selects the unmatched edge with the highest edge weight; if a neighbor had
the highest edge weight, the neighbor edge becomes the new current edge, and a new search
starting from this edge is made. At the end of the backtracking search, the weight of the
current edge is at least as high as all available adjacent edges. This edge is added to the set

42

of matched edges and its vertices are marked as matched. The next unmatched vertex in
normal order is selected to begin the next search.

By choosing the locally heaviest edges, LHM produces a 1/2-approximation to the maximum
weight matching. To reduce the repeated examination of edges, LHM uses a recursive trial
matching/search routine to keep track of the set of tested edges. Edges may be checked
several times using this recursive backtracking, but the average number of comparisons is
linear in the number of graph edges. Overall runtime is O(|Pins| * |e|max) due to the
conversion from hypergraph to graph edges.

PGM (path growing matching): PGM is a hypergraph version of the path-growing graph-
matching algorithm in [19]. It visits all vertices in normal order, building a set of disjoint
paths (sequences of vertices) from unmatched vertices. For each starting vertex, PGM
creates graph edges and their weights by converting hyperedges to their associated graph
edges logically (not actually building the complete graph) using the routine Sim. Sim creates
graph edges from a vertex by expanding hyperedges containing the vertex as a clique (with
appropriate weighting). A path grows from the starting vertex by appending the heaviest
(graph) edge with an unmatched neighbor; path growing terminates when no unmatched
neighbor vertices exist. Within each path, two sets of edges are then considered: the first set
contains every other edge along the path starting from the initial vertex, while the second set
contains the remaining path edges. The set with the larger sum of edge weights is selected,
and vertices connected by those edges are matched together. This algorithm is a 1/2-
approximation to the maximum weight matching. PGM runs in O(|Pins| * |e|max) time.

RHM (random heavy hyperedge matching): RHM is a hypergraph version of random
heavy-edge graph-matching algorithm. All vertices are visited in random order. If a vertex
is unmatched, it becomes the current vertex. Code similar to Sim (described above) is used
to compute the equivalent graph edges and weights for the hyperedges containing the vertex.
The current vertex is then matched with a vertex that is randomly selected from all
unmatched neighbor vertices in the (graph) edges with the largest weight. The randomness
reduces the sensitivity to the original vertex ordering. Some variation of RHM is the default
matching in most hypergraph packages (such as hMETIS [29]). RHM runs in
O(|Pins| * |e|max) time.

Packing Reductions

MXP (maximal packing): This algorithm visits all hyperedges in hyperedge order. If all
vertices in the current hyperedge are unmatched, MXP matches all the vertices together to
produce one equivalent vertex. MXP runs in O(|Pins|) time.

REP (random hyperedge packing): All hyperedges are visited in random order. If all
vertices in the current hyperedge are unmatched, REP matches the vertices together to
produce one equivalent vertex. REP runs in O(|Pins|) time.

RRP (random, random packing): RRP randomly visits every vertex. If the current vertex is
unmatched, it then visits all hyperedges containing this vertex. A random hyperedge is
selected from the set of hyperedges containing the current vertex and only unmatched

43

vertices. If such a hyperedge exists, all vertices in that hyperedge are matched together.
RRP runs in O(|Pins|) time.

RHP (random heavy hyperedge packing): RHP randomly visits all vertices. The set of the
heaviest hyperedges containing the current vertex and only unmatched vertices is created. A
hyperedge is randomly selected from this set, and all its vertices are matched together. RHP
runs in O(|Pins|) time.

GRP (greedy packing): GRP is a greedy algorithm that sorts all hyperedges by decreasing
hyperedge weight (and, in case of ties, decreasing hyperedge size). Hyperedges are visited in
sorted order. If all vertices in the current hyperedge are unmatched, they are all matched
together. GRP runs in O(|Pins| + |Hyperedges| * log (|Hyperedges|)) time and guarantees a
1/|e|max -approximation to the maximum weight set packing.

LHP (local heavy packing): LHP is similar to LHM, but it works directly with hyperedges
rather than converting the hypergraph to a graph. It finds a locally heaviest edge by adding
the heaviest edge along a path of unmatched edges to the set of matched edges, marking its
vertices as matched. Each search starts from the next unmatched vertex in normal vertex
order. A recursive search routine maintains a list of examined edges and vertices for each
search to minimize the number of times edges and vertices are examined. Edges may be
checked several times during the recursive backtracking, but average costs are
O(|Pins| * |e|max) time. LHP guarantees a 1/|e|max -approximation to the maximum weight set
packing.

PGP (path-growing packing): PGP is a generalization of PGM. While PGM constructs a set
of paths along graph edges, PGP constructs paths of intersecting hyperedges. PGP visits all
hyperedges in normal order. If the current hyperedge is not yet in a path, it is added to the
path. PGP then considers all hyperedges intersecting (i.e., sharing a vertex with) the current
edge and adds the heaviest intersecting hyperedge to the path. This intersecting hyperedge
becomes the current hyperedge, and the path growing is repeated until the current hyperedge
has no available intersecting hyperedges. PGP then continues with the next hyperedge in
normal order. The resulting set of paths can be split into two disjoint sets of hyperedges; the
one with the higher weight is used for the hypergraph reduction. PGP runs in time O(|Pins|)
and gives an approximation of 1/(2(|e|max-1)) for the maximum weight set packing.

Our implementation of PGP generates two disjoint sets of hyperedges by using a flag (called
side) to indicate to which disjoint set a hyperedge should be added. Each set has an
associated accumulated weight and packing array. When a hyperedge is chosen for a path, it
is added to the set indicate by the side flag, and the associated packing array is marked to
pack together all vertices in the hyperedge. The hyperedge and all its vertices are marked to
indicate to which set they are assigned and the hyperedge’s weight is added to the set’s total
weight. The side flag is then changed so that the next hyperedge on the path is added to the
opposite set. At the end of the algorithm, the set with the higher accumulated weight is
selected.

44

Grouping Reductions

MXG (maximal grouping): In MXG, each hyperedge is visited in normal order. All
unmatched vertices contained in the current hyperedge are matched together. MXG runs in
O|Pins|) time.

REG (random hyperedge grouping): In REG, all hyperedges are visited in random order.
All unmatched vertices contained in the current hyperedge are matched together. REG runs
in O|Pins|) time.

RRG (random, random grouping): RRG visits all vertices in random order. It then
randomly selects a hyperedge from the hyperedges containing the current vertex. All
unmatched vertices in this hyperedge are matched together. RRG runs in O|Pins|) time.

RHG (random heavy hyperedge grouping): In RHG, all vertices are visited in random order.
If the current vertex is unmatched, a hyperedge is randomly selected from the set of the
heaviest hyperedges containing the current vertex. All unmatched vertices in the selected
hyperedge are matched together. RHG runs in O|Pins|) time.

GRG (greedy grouping): In GRG, all hyperedges are sorted by decreasing hyperedge weight
(and hyperedge size in case of ties). Hyperedges are visited in sorted order. All unmatched
vertices in the current hyperedge are matched together. GRG runs in O(|Pins| + |Hyperedges|
* log (|Hyperedges|)).

6.1.3 Augmentation Strategies

We implemented three augmentation algorithms (aug1, aug2, and aug3) to improve the
cardinality of the reductions computed by the reduction algorithms. Augmentation strategies
for matchings were modified for packing and grouping to allow more than two vertices to be
matched together. Starting from a selected vertex, aug1, aug2 and aug3 try to grow
(augment) a path of length one, two, or three hyperedges, respectively, along the heaviest
neighboring hyperedges. If an augmented path has a heavier total hyperedge weight than any
current path of the same length starting from the original vertex, then the original reductions
involving the vertices are undone and replaced by the augmentation-induced reductions.
Augmentation method aug2 is the default method.

Augmenting paths improve the approximation to the maximum cardinality matching. If Ml is
the minimum cardinality matching and MMCM is the maximum cardinality matching, then

MCMl M
l
l

M
1
1

+
-

≥

45

where l is the length of the augmenting path [46]. Augmentation algorithm aug1 was
essentially equivalent to the maximal matching algorithm mxm. It was discarded because it
would improve only non-maximal reductions, and all the implemented reduction methods are
maximal.

Augmentation method aug3 has not been converted to directly use a hypergraph. It is not
currently used due to the expense of converting the hypergraph to a graph, but we should be
able to rewrite aug3 in terms of Sim.

6.1.4 Scaling Strategies

Graph and hypergraph matchings occasionally suffer a pathological condition where a vertex
or hyperedge becomes so dominant in the coarsening process that eventually a “star-like”
hypergraph develops; that is, all of the remaining vertices connect to the dominant vertex, but
not to each other. During further matching, packing, or grouping, only one vertex can be
matched to the dominant. Thus, rather than matching roughly half of the vertices in each
level of the multilevel algorithm, the reduction algorithm finds only one (or very few)
matches. Practically, the coarsening phase must be terminated early, resulting in fewer levels
for the local optimizer to produce a good partition. A heuristic to scale the hyperedge
weights sometimes leads to preventing or slowing this star-like formation. These hyperedge
scalings are applied once on each coarsening level prior to calling the reduction algorithm.
After the reduction algorithm creates its matchings, the hyperedge weights are returned to
their original values.

Note: The hypergraph partitioner needs to scale vertex and hyperedge weights at other
several points to create the equivalent coarsened vertices and their hyperedges. These
scalings are done inline in the applicable code and are not the subject of this section.

There are five hypergraph scalings and four graph scalings. (The graph scalings were created
when the reduction methods were still graph-based, rather than hypergraph-based; they are
not currently used.) The five hypergraph scalings are numbered rather than named. They
divide the weight of a hyperedge by the (1) hyperedge size, (2) the product of all of the
hyperedge’s vertex weights, (3) the sum of the vertex weights of the hyperedge, (4) the
maximum vertex weight in the hyperedge, or (5) the minimum vertex weight in the
hyperedge. The scaling method (1) is the current default method.

6.1.5 Global (Coarse) Partitioning Strategies

After the hypergraph has been reduced to a fairly small size in the multilevel scheme, we
need to partition this coarse hypergraph into k partitions. One option is to require the coarse
hypergraph to have exactly k vertices, and then simply assign one vertex to each partition.
However, experience from graph partitioning has shown that it is often advantageous to stop
coarsening earlier, i.e., with more than k vertices left. We have, therefore, implemented
several so-called global methods to partition the coarse hypergraph, and these are briefly
explained below.

RAN (Sequence partitioning, random order): RAN ignores the hypergraph structure. The
vertices are randomly ordered, and the partitions are formed by groups of consecutive

46

vertices. Approximate load balance is achieved by computing the cumulative sum of the
weights, and starting partition j when the cumulative sum is greater than W*(j/k), where W is
the sum of all weights.

LIN (Sequence partitioning, linear order): LIN is similar to RAN except the vertices are
ordered by their vertex numbers (labels).

BFS (Breadth-first-search): BFS first finds a pseudo-peripheral start vertex (that is, a
vertex for which there exists some vertex whose distance from the start vertex is almost the
diameter of the graph) by breadth-first search from a random vertex. Then, it computes a
breadth-first search ordering from this start vertex. This order is used to do sequence
partitioning as in LIN and RAN.

RBFS (Restarted BFS): RBFS is similar to BFS except the BFS algorithm is restarted
whenever we start a new partition. Note that for bisection (k=2), this method is identical to
BFS.

BFSH (BFS with heavy edges first): BFSH visits hyperedges in the BFS algorithm in
decreasing order by weight.

RBFSH (Restarted BFSH): RBFSH is a restarted version of BFSH.

The remaining methods are all of greedy type, and thus named GRx for some integer x. The
idea here is to greedily add vertices to a partition until the partition has reached the right size.
We always start at a pseudo-peripheral vertex, which is found by doing BFS from a random
node. Each vertex that has not yet been assigned to a partition has a certain “preference
value” with respect to the current partition. Different preference functions yield different
variations. Intuitively, the more connected a vertex is to the current partition, the higher the
preference value should be. An alternative is to estimate the hyperedge cut size. For
efficiency, a priority queue is maintained using a heap so that the vertex with the highest
preference value can be found quickly.

GR0 (Greedy method 0): The preference function is the decrease in total cut size for the
partitioning formed so far. This corresponds to the gain value in the FM algorithm.

GR1 (Greedy method 1): This variation is closely related to the “absorption” metric used in
the circuit community. Let S be the set of vertices in the current partition and let v be an
unassigned vertex. The preference function p(S,v) is given by

†

p(S,v) = w(e) e « S
ee

Â , where e denotes any hyperedge containing v,

†

e « S is the number of

vertices in both e and S, and w(e) is the weight of hyperedge e.

GR2 (Greedy method 2): GR2 is a scaled version of GR1. The preference function is

47

†

p(S,v) =
w(e)

esum(v)e
Â e « S

e
, where e denotes any hyperedge containing v, and

†

esum(v) = w(j)
j

Â for all hyperedges j containing v.

GR3 (Greedy method 3): The intuition behind this method is that it is good to add a vertex
to the current partition if the hyperedges covering that vertex already are mostly contained in
the current partition. Specifically, the larger the fraction of a hyperedge is contained in the
current partition, the better. An exponentially damped weighting formula is used:

†

p(S,v) = w(e) *2-(e - e«S -1)

e
Â , where e denotes any hyperedge containing v.

GR4 (Greedy method 4): This method is a scaled version of GR3.

Limited experiments indicate that the greedy methods generally perform better than the more
basic methods. The GR0 method appeared to be the most consistent overall and is currently
the default method. GR1-4 perform better than GR0 on some hypergraphs. We have not
performed any extensive empirical study. The choice of global method may be of little
importance, since global partitioning is always followed by a refinement phase.

6.1.6 Refinement Strategies

FM2: FM2 is a version of the Fiduccia-Mattheyes (FM) [20] graph optimizer that improves
the edge-cut and balance of a bipartition (k=2). FM2 is applied to a fine hypergraph after
every projection of a coarse hypergraph partition to a finer hypergaph. The local optimizer
selects vertices to be moved between the two partitions, measuring each move’s gain (the
difference between total cut-edge weights before and after the move). Unlike the classical
FM algorithm, which uses a fixed number of gain buckets, this version stores the moves in
heaps ordered by gain. The heaps allow arbitrary floating-point gains. The gains are
computed and placed in the heap associated with the target partition. The heaps allow easy
access to the highest gain move.

The local optimizer makes a series of vertex moves, attempting to find an improved partition.
At each step, both heaps are checked to find the move with the highest gain that maintains
the required balance. The vertex associated with this move is assigned to the target partition,
and the gains of its neighboring vertices are modified to reflect the vertex’s move. A stack
stores the sequence of vertex moves. The move that produces the lowest edge-cut weight is
marked. When either both heaps are empty or the maximum allowed number of moves
(steps) has been taken since the last minimum, no more moves are attempted. Moves that
occurred after the marked minimum-edge-cut move are undone. The minimum-edge-cut
configuration is accepted, and another pass of FM begins from that configuration. This
process continues until either no further improvement is found or until the maximum number
of passes is reached.

48

GRKWAY: GRKWAY is a parallelizable greedy optimizer based on the graph algorithm
by Karypis and Kumar [33]. Each processor stores all hyperedges (and their associated
vertices) that intersect its domain. Like FM2, the local optimizer makes a series of vertex
moves, attempting to find an improved partition. The vertex moves are divided into two
phases. Each phase has two communications.

In the first phase, each processor computes the gain for all possible vertex moves to all other
processors and saves the highest-gain move for each vertex. For each positive-gain move to
a higher-numbered processor, the processor sends the move to the target processor. Each
processor receives messages from lower-numbered processors and stores those moves in a
heap. Moves are then taken off the heap (highest gain first) and their vertices are assigned to
the receiving processor until the partition reaches it maximum total vertex weight. All moves
to this point are successful and the receiving processor becomes the new owner of those
vertices. Remaining moves in the heap are unsuccessful. Messages are returned to the
sending processors indicating whether each move was successful. Each processor then
updates its ownership, total vertex weight, and gain information based on the return
messages.

The second phase is nearly identical to the first, except that the move messages are sent only
to lower-numbered processors.

Since this algorithm makes only moves with positive gain, it has no hill climbing capability
to escape local extrema. (Fortunately, the V-cycle itself provides new opportunities at each
level to find better solutions.) The actual minimum of weighted hyperedge cuts is achieved
when all vertices are in the same partition, leaving no cuts at all. When a partition is initially
very unbalanced, most gains favor moving toward this extreme. Since this decomposition
violates the imbalance tolerance, the actual moves are not made, but there are no alternative
moves to restore balance. It is necessary to have a preprocessing phase to force a legal
balance. Then the algorithm has many available legal moves. Currently GRKWAY’s
decompositions are not as good as FM2’s, but GRKWAY can be made to run in parallel. It is
not clear that FM2 can be made to run effectively in parallel.

6.2 Hypergraph Partitioning Results

6.2.1 Design of Experiment

The large number of reduction methods, augmentation methods, scaling methods, global
optimizers, and internal parameters (e.g., the maximum number of steps since the last
minimum in the local FM optimization method) makes exhaustive testing of all possible
combinations unrealistic. The best combination of methods also depends upon the actual
problem data. In our hypergraph research, we are using design-of-experiment techniques to
determine these parameters and select from competing algorithms to produce a robust
hypergraph partitioner. Our goal is to enable the hypergraph partitioner to produce
acceptably good results over the widest possible range of problems and problems sizes.

Our design-of-experiment research uses a standard IBM test suite of 18 circuit hypergraphs,
ISPD98 [1]. Our goal is to select combinations of methods that minimize the weight of cut

49

hyperedges induced by a two-way partition while maintaining the specified vertex weight
imbalance.

The original experiments showed no statistically significant difference between the original
17 reduction methods over the 18 test problems. These experiments were used to set the
default scaling methods, augmentation methods, and major internal parameters.

Table 6 shows the benefit of our early design-of-experiment tests. For each test hypergraph,
the best Zoltan results before our design-of-experiment tests are compared to the best results
after algorithmic adjustments made as a result of the design-of-experiment tests. The
changes guided by the design-of-experiment tests produced edge-cut reductions in 16 out of
18 tests. The average total edge cuts (over 23 reduction methods in Zoltan) after the design-
of-experiment modifications are also reported. (After obtaining these results, we changed the
design-of-experiment methodology to improve the average, rather than the best, results. This
change was made to improve the robustness of the algorithms and to avoid “tuning” the
algorithms to a specific class of problems.)

Table 6 also includes results verifying the competitiveness of the Zoltan hypergraph
algorithms with the widely used hMETIS hypergraph partitioner [29]. The best Zoltan test
results after the design-of-experiment modifications are compared with published results
from hMETIS [30]. Like the Zoltan results, the published hMETIS results represent the
lowest number of edge cuts obtained from many different algorithms and parameters in
multiple runs of hMETIS. The Zoltan hypergraph methods proved to be competitive with
hMETIS; total edge cuts for Zoltan range from 13.7% more cuts than hMETIS to 7.4%
fewer.

50

Input
Hypergraph hMETIS Zoltan best: Zoltan best: Zoltan avg: (Zoltan best (Zoltan best

after DoE vs. after DoE vs.
before DoE) hMETIS)

IBM01 243 240 225 308 6.25 7.41
IBM02 272 306 262 342 14.38 3.68
IBM03 781 1002 797 1100 20.46 -2.05
IBM04 440 451 447 554 0.89 -1.59
IBM05 1718 1751 1741 2036 0.57 -1.34
IBM06 376 788 370 704 53.05 1.60
IBM07 762 763 745 856 2.36 2.23
IBM08 1157 1200 1173 1513 2.25 -1.38
IBM09 523 531 529 980 0.38 -1.15
IBM10 778 901 831 1415 7.77 -6.81
IBM11 701 735 797 1047 -8.44 -13.69
IBM12 2006 2037 2020 2507 0.83 -0.70
IBM13 884 917 888 1444 3.16 -0.45
IBM14 1636 1687 1615 2399 4.27 1.28
IBM15 1809 2427 1854 3483 23.61 -2.49
IBM16 1723 2135 1733 2937 18.83 -0.58
IBM17 2397 2392 2382 3548 0.42 0.63
IBM18 1539 1615 1620 2367 -0.31 -5.26

(published)

% Reduction in Edge CutsNumber of Cut Hyperedges

Before DoE After DoE After DoE

Table 6 Design of Experiment results for Zoltan hypergraph partitioners

The experiments then focused on the FM local optimizer fm (the predecessor to fm2), since
any significant improvement to the local optimizer reduces the importance of other choices
and makes the hypergraph partitioner more robust for arbitrary inputs. In these experiments,
we minimized the sum of the hyperedge cuts for all 23 reduction methods applied to the same
test problem with all other factors identical. We used a 95% confidence interval to establish
statistical significance. That is, 15 or more of the 18 test cases must show a decrease in the
test statistic for success; four or fewer must show an increase for an equally significant
negative result.

A literature search provided many “tricks” for improving hypergraph partitioning:

• Temporarily increasing the imbalance tolerance [11];

• Limiting the maximum number of FM passes on a level and exiting early from FM
passes [31];

• Controlling how long a vertex is locked before allowing it to move (several heuristics) [4];

• Multiple unlocking: allowing vertices to move more than once during a FM pass, allowing
illegal solutions during a pass, and applying several tie-breaking heuristics [12];

• Using tie-breaking strategies for selecting vertices to move [9]; and

• Relaxing vertex locking of vertex moves (2 algorithms) [17].

51

We tested many of the heuristics above; none demonstrated a statistically significant
improvement. The first heuristic (temporarily increasing the imbalance tolerance) showed a
statistically significant negative result.

During this research, we developed three new heuristics and verified one known heuristic
that passed this statistical test (in order of decreasing statistical significance):

• Allow each FM pass to process all vertices. Naturally, moving all vertices
significantly increases the processing time and is therefore not practical. This test
verified a known result. Our experiments showed the best approach is to limit the
number of moves to 25% of the number of vertices after no improvement is found
during a pass.

• Tighten the imbalance tolerance below the seventh level of the V-cycle to 50% of the
specified imbalance tolerance. The specified imbalance tolerance is thus abruptly
restored at level 7 and maintained until the V-cycle is complete. This approach is the
opposite of the published heuristic that had the significantly negative result.

• Perform one additional round of FM after the normal FM exit.

• Require at least 3 rounds of FM at each level.

At a later time, we developed two more heuristics that were significantly significant. Since
the FM baseline code had been improved by the above heuristics, the new heuristics were not
ranked against them:

• We discovered a small number of vertices were in the opposite partition as all of their
neighbors. We moved these vertices to the partition containing their neighbors. This
heuristic was expanded to force the movement of vertices with a very large
percentage (specified by an experimental parameter) of their neighbors in the
opposite partition. We found that this heuristic needed to be applied only after the V-
cycle was complete since FM itself moves many of these “orphans” in upper levels of
the V-cycle.

• We alternated our FM local optimizer with a greedy optimizer at each level. This
strategy provided better results than using either optimizer alone. The greedy FM is
the baseline FM with one change: it always allows the first move (highest gain move)
even if the move violates the imbalance tolerance.

With these heuristics, both the test statistic and its standard deviation improved, yielding the
test results shown in Table 6. In particular, the improvement of the standard deviation
indicated that the FM algorithm was becoming more robust.

Since the hypergraph algorithms will need extensive changes to run effectively in parallel,
these heuristics may no longer be valid. The current version of FM in Zoltan is FM2. FM2
has none of the above heuristics since it will be the springboard to the parallel version. These
and other heuristics will be tested on the parallel version of FM to improve its performance.
The real purpose of the experimental design tests was to validate the design-of-experiment

52

methodology and automate the tests and analysis for use in developing a parallel hypergraph
partitioner.

6.2.2 Hypergraph Partitioning in Sandia Applications

To demonstrate the effectiveness of hypergraph partitioning for emerging applications, we
applied both graph- and hypergraph partitioners to a variety of matrices and compared the
resulting communication volume required for matrix-vector multiplication using the resulting
decompositions. For both methods, each row i of the matrix A was represented by node ni.
For hypergraph methods, each column j was represented by a hyperedge hej with hej = {ni :
aij ≠ 0} (e.g., see Figure 10). For graph methods, edge eij connecting nodes ni and nj existed
for each non-zero aij or aji in the matrix A; that is, the graph represented the symmetrized
matrix A+AT. This symmetrization was necessary because undirected graphs cannot
represent non-symmetric matrices.

The first matrix, HexFEM, comes from a standard 3D hexahedral finite element simulation;
it is symmetric and very sparse. This type of matrix is represented reasonably well by graphs,
as graphs accurately represent symmetric systems and provide reasonable approximations to
communication required for very sparse matrices. As a result, hypergraph partitioning offers
little additional benefit compared to graph partitioning for this example. For a five-partition
decomposition, hypergraph partitioning reduced total communication volume 2-22%
compared to graph partitioning. Detailed results of HexFEM experiments are in Table 7.

53

HexFEM Matrix:
• Hexahedral 3D structured-mesh
finite element method.
• 32,768 rows
• 830,584 non-zeros
• Five partitions

Number of
Neighboring
Partitions per
Partition

Communication
Volume over all
Partitions

Partitioning Method Imbalance
(Max /
Avg
Work)

Max Avg Max Total

Reduction of
Total
Communication
Volume

Graph partitioning
(ParMETIS
PartKWay)

1.03 4 3.6 1659 6790

Best Zoltan
hypergraph method
(RRM)

1.013 4 3.6 1164 5270 22%

Worst Zoltan
hypergraph method
(RHP)

1.019 4 2.8 2209 6644 2%

Table 7 Results comparing graph and hypergraph partitioning methods for the
HexFEM matrix.

A second matrix, FluidDFT, comes from a fluid simulation in the Density Functional Theory
code Tramonto [21]. It has 1643 rows and 1,167,426 non-zeros. Because of its greater
density, hypergraph partitioning shows some reduction in communication volume over graph
partitioning. For a twelve-partition decomposition, hypergraph partitioning reduced total
communication volume 15-33% compared to graph partitioning. Detailed results of
FluidDFT experiments are in Table 8.

54

FluidDFT Matrix:
• Fluid simulation matrix from
Tramonto
• 1643 rows
• 1,167,426 non-zeros
• Twelve partitions

Number of
Neighboring
Partitions
per Partition

Communication
Volume over all
Partitions

Partitioning Method Imbalance
(Max /
Avg
Work)

Max Avg Max Total

Reduction of
Total
Communication
Volume

Graph partitioning
(ParMETIS
PartKWay)

1.037 11 11 1276 13,506

Best Zoltan
hypergraph method
(GRG)

1.037 9 6.8 1184 9,055 33%

Worst Zoltan
hypergraph method
(REM)

1.037 9 7.5 1260 11,376 15%

Table 8 Results comparing graph and hypergraph partitioning methods for the
FluidDFT matrix. Matrix structure is shown in the upper right, with a detailed

view of a sub-matrix to the right of the entire matrix

Even greater benefit of hypergraph partitioning is seen in the third matrix, PolymerDFT,
which comes from a polymer self-assembly simulation in Tramonto. PolymerDFT has
46,176 rows with 3,690,048 non-zeros in an intricate sparsity pattern arising from the very
wide stencil used in the DFT computations. For an eight-partition decomposition, hypergraph
partitioning reduced total communication volume 37-56% relative to graph partitioning.
With hypergraph partitioning, the number of neighboring partitions was also reduced.
Detailed results of the PolymerDFT experiments are in Table 9.

55

PolymerDFT Matrix:
• Polymer self-
assembly matrix
from Tramonto
• 46,176 rows
• 3,690,048 non-
zeros
• Eight partitions

Number of
Neighboring
Partitions per
Partition

Communication
Volume over all
Partitions

Partitioning Method Imbalance
(Max /
Avg
Work)

Max Avg Max Total

Reduction of
Total
Communication
Volume

Graph partitioning
(ParMETIS
PartKWay)

1.03 7 6 7382 44,994

Best Zoltan
hypergraph method
(MXG)

1.018 5 4 3493 19,427 56%

Worst Zoltan
hypergraph method
(GRP)

1.03 6 5.25 5193 28,067 37%

Table 9. Results comparing graph and hypergraph partitioning methods for the
PolymerDFT matrix. Matrix structure is shown in the upper right, with detailed

views of sub-matrices to the right of the entire matrix.

Given the effectiveness of hypergraph methods for these emerging simulations, we will
pursue development of a parallel hypergraph partitioner within Zoltan. This partitioner will
include the first parallel implementation of hypergraph partitioning algorithms. It will
provide critical capabilities for large-scale, emerging applications at Sandia.

6.3 Future Work

Hypergraph partitioning promises greater accuracy and more effective partitioning than the
graph partitioners commonly used today. By accurately modeling communication volume, it
provides more efficient decompositions for emerging applications such as circuit modeling
and computational biology simulations. Its ability to represent rectangular and non-
symmetric systems allows it to be used for a much broader range of applications, including
interior point methods and least-squares methods. Using our serial hypergraph algorithms as
a starting point, we will develop a parallel hypergraph partitioner. This partitioner will be the
first parallel implementation of these methods, providing parallel and dynamic partitioning to
Sandia’s large-scale simulations. Using our hypergraph framework, we will also complete

56

implementation of the iterative diffusive schemes proposed by Pinar [43, 44]. These
capabilities will be delivered to applications through interfaces in both Trilinos and Zoltan.

7 Conclusions and Future Work

Effective distribution of data to processors is a critical capability for efficient linear solvers
and preconditioners. This report documents development of partitioning infrastructure and
strategies for optimal solver performance. Parallel data redistribution capabilities were added
to the Trilinos solver framework through new classes and methods in the Petra linear algebra
package. Efficient parallel directory and unstructured communication utilities were added to
the Zoltan parallel data management toolkit, along with appropriate interfaces to them from
Petra. We developed new strategies for multi-criteria geometric partitioning and hypergraph
partitioning and performed experiments demonstrating their effectiveness for new classes of
applications.

Improvements to the multi-criteria geometric partitioners will allow these methods to be
more effective for many applications of interest to Sandia. For example, multi-criteria
geometric partitioning may prove to be effective for some crash simulations, where,
currently, separate decompositions are used for surface and volume computations. It may
also improve the performance of applications requiring both balanced computation and
memory usage.

The hypergraph partitioning work begun in this effort is the basis for the development of the
first parallel hypergraph partitioner. Parallelization will enable hypergraph partitioning to be
used for problems too large to be partitioned serially and for problems requiring dynamic
partitioning to adjust processor workloads as computations proceed. Hypergraph partitioning
promises to play an important role in emerging Sandia applications, where matrices are often
non-symmetric, highly connected, and/or rectangular. Delivery of this capability directly
through Zoltan and indirectly through Trilinos will allow our continuing work to impact the
largest number of Sandia applications.

57

8 References

1. C. Alpert. “The ISPD98 Circuit Benchmark Suite.” International Symposium on Physical
Design, pp 18-25, ACM, April 1998.

2. S. Balay, W. Gropp, L. McInnes, and B. Smith. PETSc 2.0 users manual. Tech. Rep.
ANL-95/11 - Revision 2.0.22, Argonne National Laboratory.

3. S. Balay, W. Gropp, L. McInnes, and B. Smith. PETSc home page.
http://www.mcs.anl.gov/petsc.

4. R. Battiti and A. Bertossi. “Greedy,Prohibition, and Reactive Heuristics for Graph
Partitioning.” IEEE Transactions on Computers, Vol 48, No 4, April 1999.

5. R. Bisseling. MONDRIAAN.
http://www.math.uu.nl/people/bisseling/Mondriaan/mondriaan.html

6. M.W. Boldt, M.W. An Excursion in High-level Mathematical Modeling through
Convection-Diffusion Model Problems, Honors Thesis. Advisor: Michael A. Heroux,
Saint John’s University, Collegeville, MN, 2003.

7. E. Boman, K. Devine, R. Heaphy, B. Hendrickson, W. Mitchell and C. Vaughan.
“Zoltan: A Dynamic Load-Balancing Library for Parallel Applications – User’s Guide.”
Sandia National Labs. Tech. Rep. SAND99-1377, Albuquerque, NM, 1999.
http://www.cs.sandia.gov/Zoltan/ug_html/ug.html.

8. L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Jemmel, I. Dhillon, J. Dongarra, S.
Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. ScaLAPACK
Users’ Guide. SIAM Pub, 1997.

9. A. Caldwell, A. Kahng, A. Kennings, and J. Markov. “Hypergraph Partitioning for VLSI
CAD: Methodology for Heuristic Development, Experimenting and Reporting.” Proc.
ACM/IEEE Design Automation Conf., pp. 349-354, June 1999.

10. A. Caldwell, A. Kahng, and J. Markov. “Design and Implementation of Move-Based
Heuristics for VLSI Partitioning.” ACM Journal on Experimental Algorithms, 5, 2000.

11. A. Caldwell, A. Kahng, and J. Markov. “Improved Algorithms for Hypergraph
Bipartitioning.” ASPDAC ’00, ACM/IEEE, pp. 661-666. January, 2000.

12. A. Caldwell, A. Kahng, and J. Markov. “Design and Implementation of the Fiduccia-
Mattheyses Heuristic for VLSI Netlist Partitioning.” Proc. Workshop on Algorithm
Engineering and Experimentation (ALENEX), January, 1999.

13. U. Catalyurek and C. Aykanat. PaToH. http://www.cs.umd.edu/~umit/software.htm.
14. U. Catalyurek and C. Aykanat. “Hypergraph-partitioning based decomposition for

parallel sparse-matrix vector multiplication.” IEEE Transactions on Parallel and
Distributes Systems, 10(7): 673–693, 1999.

15. C. Chang, T. Kurc, A. Sussman, U. Catalyurek, and J. Saltz. “A Hypergraph-Based
Workload Partitioning Strategy for Parallel Data Aggregation.” Procs. of the Eleventh
SIAM Conference on Parallel Processing for Scientific Computing, SIAM, March 2001.

16. E. Chow, T. Eliassi-Rad, and V. Henson (with B. Hendrickson, A. Pinar, and A. Pothen).
Parallel graph algorithms for complex networks. FY04 LDRD Proposal, LLNL, 2003.

17. A. Dasdan and C. Aykanat. “Two Novel Multiway Circuit Partitioning Algorithms Using
Relaxed Locking.” IEEE Trans. CAD, v16, n2, Feburary 1997.

18. K. Devine, E. Boman, R. Heaphy, B. Hendrickson, W. Mitchell and C. Vaughan. Zoltan
home page. http://www.cs.sandia.gov/Zoltan.

58

19. D. Drake and S. Hougardy. “A Simple Approximation Algorithm for the Weighted
Matching Problem.” Information Processing Letters, 85 (2003) 211-213.

20. C.M. Fiduccia and R.M. Mattheyes. A Linear Time Heuristics for improving Network
Partitions. Proc. ACM-IEEE Design Automation Conf., 1982.

21. L.J.D. Frink, A.G. Salinger, M.P. Sears, J.D. Weinhold, and A.L. Frischknecht.
“Numerical challenges in the application of density functional theory to biology and
nanotechnology.” J. Phys. Cond. Matter, vol. 14, 12167-12187 (2002).

22. B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. Proc.
SC’95, ACM, 1995.

23. B. Hendrickson and R. Leland. “The Chaco User’s Guide, Version 2.0.” Sandia
National Laboratories Tech. Rep. SAND95-2344, Albuquerque, NM, 1995.

24. M. Heroux et al. Trilinos. http://software.sandia.gov/trilinos/.
25. M. Heroux et al. Epetra. http://software.sandia.gov/trilinos/packages/epetra/index.html.
26. M.A. Heroux, et. al. “An Overview of the Trilinos Project.” ACM Trans. Math. Software,

submitted, 2003.
27. S. Hutchinson, et al. Xyce home page. http://www.cs.sandia.gov/xyce.
28. M.A. Iqbal. “Approximate algorithms for partitioning and assignment problems.” Int. J.

Par. Prog., 20, 1991.
29. G. Karypis. hMETIS. http://www–users.cs.umn.edu/~karypis/metis/hmetis/index.html.
30. G. Karypis. hMETIS published results.

http://www.visicad.cs.ucla.edu/~cheese/errata.html.
31. G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. “Multilevel Hypergraph

Partitioning: Applications in VLSI Domain.” Proc. ACM/IEEE Design Automation Conf.,
1997, pp. 526-529.

32. G. Karypis, K. Schloegel, and V. Kumar. ParMETIS home page.
http://www–users.cs.umn.edu/~karypis/metis/parmetis/index.html.

33. G. Karypis and V. Kumar. A Coarse-Grain Parallel Formulation of Multilevel k-way
Graph Partitioning Algorithm. 8th SIAM Conference on Parallel Processing for
Scientific Computing, 1997.

34. G. Karypis and V. Kumar. “Multilevel algorithms for multiconstraint graph partitioning”,
Tech. report 98-019, Computer Science Dept., Univ. of Minnesota.

35. G. Karypis and V. Kumar. METIS home page:
http://www-users.cs.umn.edu/~karypis/metis/.

36. B. Kernighan and S. Lin. “An efficient heuristic procedure for partitioning graphs.” Bell
System Technical Journal, 29 (1970), pp291-307.

37. D. Knuth. The Art of Computer Programming, Volume 3, Sorting and Searching.
Addison Wesley, Reading, MA, 1998.

38. C.Y. Lo, J. Matousek, and W. Steiger. “Algorithms for Ham-Sandwich Cuts.” Disc.
Comput. Geometry (Jun 1994), v. 11, no. 4, pp. 433-452.

39. K.R. Long. Sundance Home Page: http://csmr.ca.sandia.gov/~krlong/sundance.html.
40. B. Olstad and F. Manne. “Efficient partitioning of sequences.” IEEE Trans. Comp.

(1995), v. 44, pp. 1322-1326.
41. M. Ozdal and C. Aykanat. “Hypergraph Models and Algorithms for Data-Pattern Based

Clustering.” to appear in Data Mining and Knowledge Discovery.
42. F. Pellegrini. “SCOTCH 3.4 User's guide.” Research report RR-1264-01, LaBRI,

November 2001. http://www.labri.fr/Perso/~pelegrin/scotch/

59

43. A. Pinar. Combinatorial Algorithms in Scientific Computing. Ph.D. Dissertation, UIUC,
2001.

44. A. Pinar and B. Hendrickson. “Partitioning for Complex Objectives.” Proc. Irregular’01.
San Francisco, CA, April 2001.

45. A. Pinar and B. Hendrickson. “Communication Support for Adaptive Computation.”
Proc. SIAM Conf. on Parallel Processing for Scientific Computation, 2001.

46. R. Preis. “Linear Time 1/2 –Approximation Algorithm for Maximum Weighted Matching
in General Graphs.” Symposium on Theoretical Aspects of Computer Science, STACS 99,
Meinel, Tison (eds), Springer, LNCS 1563, 1999, 259-269.

47. R. Preis and R. Diekmann. “The PARTY Partitioning-Library, User Guide - Version
1.1.” Technical Report tr-rsfb-96-024, University of Paderborn, Sep. 1996.
http://www.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/party.html

48. R. Preis, B. Hendrickson, and A. Pothen. “Fast approximation algorithms for the
weighted k-set packing problem.” In progress.

49. K. Schloegel, G. Karypis and V. Kumar. “Parallel static and dynamic multiconstraint
graph partitioning,” Concurrency and Computation – Practice & Experience, 2002, v. 14,
no. 3, pp. 219-240 (EuroPar 2000 Conference)

50. A. Salinger, K. Devine, G. Hennigan, H. Moffat, S. Hutchinson, and J. Shadid.
“MPSalsa: A Finite Element Computer Program for Reacting Flow Problems; Part
2—User’s Guide.” Sandia National Laboratories Tech. Rep. SAND96-2331,
Albuquerque, NM, 1996.

51. J.N. Shadid, et al. MPSalsa home page. http://www.cs.sandia.gov/CRF/MPSalsa.
52. A. H. Stone and J.W. Tukey. “Generalized Sandwich Theorems.” Duke Math. J. 9, 356-

359, 1942.
53. R.S. Tuminaro, M.A. Heroux, S.A. Hutchinson, and J.N. Shadid. Official Aztec User’s

Guide, Version 2.1. Sandia National Laboratories, Albuquerque, NM, 1999.
54. C. Walshaw, M. Cross, and M. Everett. “Parallel Dynamic Graph Partitioning for

Adaptive Unstructured Meshes.” J. Par. Dist. Comput., 47(2):102-108, 1997.
http://www.gre.ac.uk/~c.walshaw/jostle/

60

Distribution list:

External distribution:

Ken Stanley
322 W. College St.
Oberlin OH 44074

Matthias Heinkenschloss
Department of Computational and Applied Mathematics - MS 134
Rice University
6100 S. Main Street
Houston, TX 77005 - 1892

Dan Sorenson
Department of Computational and Applied Mathematics - MS 134
Rice University
6100 S. Main Street
Houston, TX 77005 - 1892

Yousef Saad
Department of Computer Science and Engineering
University of Minnesota,
4-192 EE/CSci Building, 200 Union Street S.E.
Minneapolis, MN 55455

Kris Kampshoff
Department of Computer Science and Engineering
University of Minnesota,
EE/CSci Building, 200 Union Street S.E.
Minneapolis, MN 55455

Eric de Sturler
2312 Digital Computer Laboratory, MC-258
University of Illinois at Urbana-Champaign
1304 West Springfield Avenue
Urbana, IL 61801-2987

Paul Sexton
Box 1560
St. John's University
Collegeville, MN 56321

61

Tim Davis, Assoc. Prof.
Room E338 CSE Building
P.O. Box 116120
University of Florida-6120
Gainesville, FL 32611-6120

Padma Raghavan
Department of Computer Science and Engineering
308 Pond Laboratory
The Pennsylvania State University
University Park, PA 16802-6106

Xiaoye Li
Lawrence Berkeley Lab
50F-1650
1 Cyclotron Rd
Berkeley, CA 94720

Richard Barrett
Los Alamos National Laboratory
Mail Stop B272
Los Alamos, NM 87545

Victor Eijkhout
Department of Computer Science,
203 Claxton Complex, 1122 Volunteer Boulevard,
University of Tennessee at Knoxville,
Knoxville TN 37996, USA

David Keyes
Appl Phys & Appl Math
Columbia University
200 S. W. Mudd Building
500 W. 120th Street
New York, NY, 10027

Lois Curfman McInnes
Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

62

Barry Smith
Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

Paul Hovland
Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

Craig Douglas
325 McVey Hall - CCS
Lexington, KY 40506-0045

Robert Preis
University of Paderborn
Faculty of Computer Science, Electrical Engineering and Mathematics
Warburger Straße 100
D-33098 Paderborn
Germany

Joseph Flaherty
Dean, School of Science
Rensselaer Polytechnic Institute
Troy, NY 12180

Ali Pinar
NERSC
Lawrence Berkeley National Laboratory
One Cyclotron Road MS 50F
Berkeley, CA 94720

Umit Catalyurek
The Ohio State University
Department of Anatomy and Medical Education
3184 Graves Hall
333 W. 10th Ave.
Columbus, OH 43210

63

Internal Distribution:

1 MS 0310 R.W. Leland, 9220
1 MS 0316 R. J. Hoekstra, 9233
1 MS 0316 R. P. Pawlowski, 9233
1 MS 0316 S. A. Hutchinson, 9233
1 MS 0316 L.J.D. Frink, 9212
1 MS 0316 S.J. Plimpton, 9212
2 MS 0323 D.L. Chavez (LDRD office), 1011
1 MS 0826 A. B. Williams, 8961
1 MS 0826 J.R. Stewart, 9143
1 MS 0827 H.C. Edwards, 9143
1 MS 0834 R. P. Schunk, 9114
1 MS 0835 K. H. Pierson, 9142
1 MS 0835 M.W. Glass, 9141
1 MS 0847 C. R. Dohrmann, 9124
1 MS 0847 G. M. Reese, 9142
1 MS 1110 D. E. Womble, 9214
10 MS 1110 M. A. Heroux, 9214
1 MS 1110 J.D. Teresco, 9214
1 MS 1110 W. McLendon, 9223
1 MS 1111 A. G. Salinger, 9233
1 MS 1111 J. N. Shadid, 9233
10 MS 1111 K.D. Devine, 9215
5 MS 1111 R.T. Heaphy, 9215
5 MS 1111 E.G. Boman, 9215
1 MS 1111 B.A. Hendrickson, 9215
1 MS 1152 J. D. Kotulski, 1642
1 MS 1166 C. R. Drumm, 15345
1 MS 9217 J. J. Hu, 9214
1 MS 9217 K. R. Long, 8962
1 MS 9217 P. T. Boggs, 8962
1 MS 9217 R. S. Tuminaro, 9214
1 MS 9217 T. Kolda, 8962
1 MS 9217 V. E. Howle, 8962

1 MS 9018 Central Technical Files, 8945-1
2 MS 0899 Technical Library, 9616

	Abstract
	Table of Contents
	1 Introduction
	2 Parallel Data Redistribution in The Petra Object Model
	2.1 Parallel Data Redistribution
	2.1.1 PDR and Sparse Matrix Calculations

	2.2 An Object-oriented approach to PDR
	2.2.1 Communication Classes
	2.2.2 Element Spaces
	2.2.3 Distributed Objects
	2.2.4 Import and Export Operations
	2.2.5 Import/Export Uses

	2.3 Implementation Issues for PDR
	2.3.1 Computing Importers and Exporters
	2.3.2 Implementing the DistObject Base Class

	2.4 Parallel Data Redistribution Results
	2.4.1 Robust Calculations and Dynamic Load Balancing
	2.4.2 Epetra-Zoltan Interface
	2.4.3 Partitioning for Highly Convective Flows

	2.5 Conclusions

	3 Distributed Data Directory
	3.1 Distributed Data Directory Usage
	3.2 Distributed Data Directory Implementation
	3.3 Distributed Data Directory Functions

	4 Unstructured Communication
	5 Multicriteria partitioning and load balancing
	5.2 Linear partitioning and bisection
	5.3 Multiconstraint or multiobjective?
	5.4 Multiobjective methods
	5.5 Multiobjective bisection
	5.6 Implementation in Zoltan
	5.7 Empirical results
	5.8 Future work
	5.1 Introduction

	6 Hypergraph Partitioning
	6.1 Multilevel Hypergraph Partitioning
	6.1.1 Terminology
	6.1.2 Coarsening Strategies
	6.1.3 Augmentation Strategies
	6.1.4 Scaling Strategies
	6.1.5 Global (Coarse) Partitioning Strategies
	6.1.6 Refinement Strategies

	6.2 Hypergraph Partitioning Results
	6.2.1 Design of Experiment
	6.2.2 Hypergraph Partitioning in Sandia Applications

	6.3 Future Work

	7 Conclusions and Future Work
	8 References
	Distribution list:

