U-Sries Disequilibra in Soils, Pena Blanca Natural Analog, Chihuahua, Mexico

PDF Version Also Available for Download.

Description

The Nopal I uranium deposit located in the Sierra Pena Blanca, Mexico. The deposit was mined in the early 1980s, and ore was stockpiled close by. This stockpile area was cleared and is now referred to as the Prior High Grade Stockpile (PHGS). Some of the high-grade boulders from the site rolled downhill when it was cleared in the 1990s. For this study soil samples were collected from the alluvium surrounding and underlying one of these boulders. A bulk sample of the boulder was also collected. Because the Prior High Grade Stockpile had no ore prior to the 1980s a ... continued below

Creation Information

French, D.; Anthony, E. & Goodell, P. March 16, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Nopal I uranium deposit located in the Sierra Pena Blanca, Mexico. The deposit was mined in the early 1980s, and ore was stockpiled close by. This stockpile area was cleared and is now referred to as the Prior High Grade Stockpile (PHGS). Some of the high-grade boulders from the site rolled downhill when it was cleared in the 1990s. For this study soil samples were collected from the alluvium surrounding and underlying one of these boulders. A bulk sample of the boulder was also collected. Because the Prior High Grade Stockpile had no ore prior to the 1980s a maximum residence time for the boulder is about 25 years, this also means that the soil was at background as well. The purpose of this study is to characterize the transport of uranium series radionuclides from ore to the soil. Transport is characterized by determining the activities of individual radionuclides and daughter to parent ratios. Isotopes of the uranium series decay chain detected include {sup 210}Pb, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 214}Pb, and {sup 214}Bi. Peak areas for each isotope are determined using gamma-ray spectroscopy with a Canberra Ge (Li) detector and GENIE 2000 software. The boulder sample is close to secular equilibrium when compared to the standard BL-5 (Beaver Lodge Uraninite from Canada). Results for the soils, however, indicate that some daughter/parent pairs are in secular disequilibrium. These daughter/parent (D/P) ratios include {sup 230}Th/{sup 234}U, which is greater than unity, {sup 226}Ra/{sup 230}Th, which is also greater than unity, and {sup 210}Pb/{sup 214}Bi, which is less than unity. The gamma-ray spectrum for organic material lacks {sup 230}Th peaks, but contains {sup 234}U and {sup 226}Ra, indicating that plants preferentially incorporate {sup 226}Ra. Our results, combined with previous studies require multistage history of mobilization of the uranium series radionuclides. Earlier studies at the ore zone could limit the time span for mobilization only to a few thousand years. The contribution of this study is that the short residence time of the ore at the Prior High Grade Stockpile requires a time span for mobilization of 20-30 years.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NA
  • Grant Number: NA
  • DOI: 10.2172/893926 | External Link
  • Office of Scientific & Technical Information Report Number: 893926
  • Archival Resource Key: ark:/67531/metadc879492

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 16, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 9, 2016, 12:02 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

French, D.; Anthony, E. & Goodell, P. U-Sries Disequilibra in Soils, Pena Blanca Natural Analog, Chihuahua, Mexico, report, March 16, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc879492/: accessed May 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.