Extreme inputs/outputs for multiple input multiple output linear systems.

PDF Version Also Available for Download.

Description

A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the auto spectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the auto spectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input auto spectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less ... continued below

Physical Description

52 p.

Creation Information

Smallwood, David Ora September 1, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the auto spectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the auto spectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input auto spectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one will result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.

Physical Description

52 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2005-5307
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/875611 | External Link
  • Office of Scientific & Technical Information Report Number: 875611
  • Archival Resource Key: ark:/67531/metadc879480

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 7, 2016, 11:29 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Smallwood, David Ora. Extreme inputs/outputs for multiple input multiple output linear systems., report, September 1, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc879480/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.