Final report: mathematical method for quantifying the effectiveness of management strategies.

PDF Version Also Available for Download.

Description

Large complex teams (e.g., DOE labs) must achieve sustained productivity in critical operations (e.g., weapons and reactor development) while maintaining safety for involved personnel, the public, and physical assets, as well as security for property and information. This requires informed management decisions that depend on tradeoffs of factors such as the mode and extent of personnel protection, potential accident consequences, the extent of information and physical asset protection, and communication with and motivation of involved personnel. All of these interact (and potentially interfere) with each other and must be weighed against financial resources and implementation time. Existing risk analysis tools ... continued below

Physical Description

137 p.

Creation Information

Covan, John Morgan; Sena-Henderson, Lisa; Robinett, Rush D., III; Brewer, Jeffrey D.; Roginski, Robert J. & Cooper, James Arlin October 1, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Large complex teams (e.g., DOE labs) must achieve sustained productivity in critical operations (e.g., weapons and reactor development) while maintaining safety for involved personnel, the public, and physical assets, as well as security for property and information. This requires informed management decisions that depend on tradeoffs of factors such as the mode and extent of personnel protection, potential accident consequences, the extent of information and physical asset protection, and communication with and motivation of involved personnel. All of these interact (and potentially interfere) with each other and must be weighed against financial resources and implementation time. Existing risk analysis tools can successfully treat physical response, component failure, and routine human actions. However, many ''soft'' factors involving human motivation and interaction among weakly related factors have proved analytically problematic. There has been a need for an effective software tool capable of quantifying these tradeoffs and helping make rational choices. This type of tool, developed during this project, facilitates improvements in safety, security, and productivity, and enables measurement of improvements as a function of resources expended. Operational safety, security, and motivation are significantly influenced by ''latent effects'', which are pre-occurring influences. One example of these is that an atmosphere of excessive fear can suppress open and frank disclosures, which can in turn hide problems, impede correction, and prevent lessons learned. Another is that a cultural mind-set of commitment, self-responsibility, and passion for an activity is a significant contributor to the activity's success. This project pursued an innovative approach for quantitatively analyzing latent effects in order to link the above types of factors, aggregating available information into quantitative metrics that can contribute to strategic management decisions, and measuring the results. The approach also evaluates the inherent uncertainties, and allows for tracking dynamics for early response and assessing developing trends. The model development is based on how factors combine and influence other factors in real time and over extended time periods. Potential strategies for improvement can be simulated and measured. Input information can be determined by quantification of qualitative information in a structured derivation process. This has proved to be a promising new approach for research and development applied to personnel performance and risk management.

Physical Description

137 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2005-6032
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/876366 | External Link
  • Office of Scientific & Technical Information Report Number: 876366
  • Archival Resource Key: ark:/67531/metadc879298

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • July 25, 2017, 9:09 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Covan, John Morgan; Sena-Henderson, Lisa; Robinett, Rush D., III; Brewer, Jeffrey D.; Roginski, Robert J. & Cooper, James Arlin. Final report: mathematical method for quantifying the effectiveness of management strategies., report, October 1, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc879298/: accessed April 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.