ELECTRON COOLING IN THE RECYCLER COOLER

PDF Version Also Available for Download.

Description

A 0.1-0.5 A, 4.3 MeV DC electron beam provides cooling of 8 GeV antiprotons in Fermilab's Recycler storage ring. The most detailed information about the cooling properties of the electron beam comes from drag rate measurements. We find that the measured drag rate can significantly differ from the cooling force experienced by a single antiproton because the area of effective cooling is significantly smaller than the physical size of the electron beam and is comparable with the size of the antiproton beam used as a probe. Modeling by the BETACOOL code supports the conclusion about a large radial gradient of ... continued below

Creation Information

SHEMYAKIN,A.; PROST, L.R.; FEDOTOV, A. & SIDORIN, A. September 10, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A 0.1-0.5 A, 4.3 MeV DC electron beam provides cooling of 8 GeV antiprotons in Fermilab's Recycler storage ring. The most detailed information about the cooling properties of the electron beam comes from drag rate measurements. We find that the measured drag rate can significantly differ from the cooling force experienced by a single antiproton because the area of effective cooling is significantly smaller than the physical size of the electron beam and is comparable with the size of the antiproton beam used as a probe. Modeling by the BETACOOL code supports the conclusion about a large radial gradient of transverse velocities in the presently used electron beam.

Source

  • COOL 07 - WORKSHOP ON BEAM COOLING AND RELATED TOPICS; BAD KREUZNACH, GERMANY; 20070910 through 20070914

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--78080-2007-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 918593
  • Archival Resource Key: ark:/67531/metadc879295

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 10, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 1, 2016, 5:18 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

SHEMYAKIN,A.; PROST, L.R.; FEDOTOV, A. & SIDORIN, A. ELECTRON COOLING IN THE RECYCLER COOLER, article, September 10, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc879295/: accessed September 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.