Selective Media for Actinide Collection and Pre-Concentration: Results of FY 2006 Studies

PDF Version Also Available for Download.

Description

In this work, we have investigated new materials for potential use in automated radiochemical separations. The work can be divided into three primary tasks: (1) synthesis of new ligands with high affinity for actinide ions, (2) evaluation of new materials for actinide ion affinity, and (3) computational design of advanced ligand architectures for highly selective binding of actinide ions. Ligand Synthesis Work was conducted on synthesizing Kl?ui ligand derivatives containing functionalized pendant groups on the cyclopentadienyl ring. The functionalized pendent groups would allow these ligands to be attached to organic and inorganic solid supports. This work focused on synthesizing the ... continued below

Physical Description

PDFN

Creation Information

Lumetta, Gregg J.; Addleman, Raymond S.; Hay, Benjamin P.; Hubler, Timothy L.; Levitskaia, Tatiana G.; Sinkov, Sergey I. et al. November 17, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

  • Pacific Northwest National Laboratory (U.S.)
    Publisher Info: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States), Environmental Molecular Sciences Laboratory (EMSL)
    Place of Publication: Richland, Washington

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In this work, we have investigated new materials for potential use in automated radiochemical separations. The work can be divided into three primary tasks: (1) synthesis of new ligands with high affinity for actinide ions, (2) evaluation of new materials for actinide ion affinity, and (3) computational design of advanced ligand architectures for highly selective binding of actinide ions. Ligand Synthesis Work was conducted on synthesizing Kl?ui ligand derivatives containing functionalized pendant groups on the cyclopentadienyl ring. The functionalized pendent groups would allow these ligands to be attached to organic and inorganic solid supports. This work focused on synthesizing the compound Na[Cp?Co(PO(OC2H5)2)3], where Cp?= C5H4C(O)OCH3. Synthesizing this compound is feasible, but the method used in FY 2006 produced an impure material. A modified synthetic scheme has been developed and will be pursued in FY 2007. Work was also initiated on synthesizing bicyclic diamides functionalized for binding to polymeric resins or other surfaces. Researchers at the University of Oregon are collaborators in this work. To date, this effort has focused on synthesizing and characterizing a symmetrically substituted bicyclic diamide ligand with the ?COOH functionality. Again, this synthetic effort will continue into FY 2007. Separations Material Evaluation Work was conducted in FY 2006 to provide a more extensive set of data on the selectivity and affinity of extraction chromatography resins prepared by sorption of Kl?ui ligand onto an inert macroreticular polymeric support. Consistent with previous observations, it was found that these materials strongly bind tetravalent actinides. These materials also adsorb trivalent actinides at low nitric acid concentrations, but the affinity for the trivalent actinides decreases with increasing nitric acid concentration. These materials have relatively low affinity for U(VI), but they do sorb U(VI) to a greater extent than Am(III) at [HNO3] > 0.3 M. Preliminary results suggest that the Kl?ui resins can separate Pu(IV) from sample solutions containing high concentrations of competing ions. Conceptual protocols for recovery of the Pu from the resin for subsequent analysis have been proposed, but further work is needed to perfect these techniques. Work on this subject will be continued in FY 2007. Automated laboratory equipment (in conjunction with Task 3 of the NA-22 Automation Project) will be used in FY 2007 to improve the efficiency of these experiments. The sorption of actinide ions on self-assembled monolayer on mesoporous supports materials containing diphosphonate groups was also investigated. These materials also showed a very high affinity for tetravalent actinides, and they also sorbed U(VI) fairly strongly. Computational Ligand Design An extended MM3 molecular mechanics model was developed for calculating the structures of Kl?ui ligand complexes. This laid the groundwork necessary to perform the computer-aided design of bis-Kl?ui architectures tailored for Pu(IV) complexation. Calculated structures of the Kl?ui ligand complexes [Pu(Kl?ui)2(OH2)2]2+ and [Fe(Kl?ui)2]+ indicate a ''bent'' sandwich arrangement of the Kl?ui ligands in the Pu(IV) complex, whereas the Fe(III) complex prefers a ''linear'' octahedral arrangement of the two Kl?ui ligands. This offers the possibility that two Kl?ui ligands can be tethered together to form a material with very high binding affinity for Pu(IV) over Fe(III). The next step in the design process is to use de novo molecule building software (HostDesigner) to identify potential candidate architectures.

Physical Description

PDFN

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PNNL-16213
  • Grant Number: AC05-76RL01830
  • DOI: 10.2172/896079 | External Link
  • Office of Scientific & Technical Information Report Number: 896079
  • Archival Resource Key: ark:/67531/metadc879264

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 17, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 9, 2016, 9:42 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lumetta, Gregg J.; Addleman, Raymond S.; Hay, Benjamin P.; Hubler, Timothy L.; Levitskaia, Tatiana G.; Sinkov, Sergey I. et al. Selective Media for Actinide Collection and Pre-Concentration: Results of FY 2006 Studies, report, November 17, 2006; Richland, Washington. (https://digital.library.unt.edu/ark:/67531/metadc879264/: accessed April 24, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.