

Calculation Cover Sheet
Complete only applicable items.

1. QA: L

Q $1 / \frac{1}{2} 6 / 24 / 99$

- Contents expanded to include 3 header levels
- Period added after first level heading number - "NV" changed to "Ncuads" in Reference section. - Total page numbers changed on cover sheet $\begin{array}{r}\text { n/d } \\ \text { 7/il99 }\end{array} \frac{2 c, P}{7 / 8 / 99}$

Revision History

CONTENTS

Page

1. PURPOSE 4
2. METHOD 4
3. ASSUMPTIONS 4
4. USE OF COMPUTER SOFTWARE AND MODELS 6
4.1 SOFTWARE APPROVED FOR QA WORK 6
4.1.1 RIP Version 5.19.01. CSCI: 30055. 6
4.1.2 FEHM Version 2.0.0. CSCI: N/A (TBV 564) 6
4.2 SOFTWARE ROUTINES 7
4.2.1 SZ_Convolute. Version 1.0. CSCI: 30038 7
4.2.2 EFDR/DCC, CSCI: 30065 V1.07
4.3 MODELS 8
5. CALCULATION 8
5.1 DRIP SHIELD MODIFICATIONS 9
5.1.1 No flux through waste packages or invert until drip shield failure (Assumption 3.5) 9
5.1.2 Flux Scaled to the minimum of the patch area (Assumption 3.5) 9
5.1.3 Juvenile Failure Flux 10
5.2 INVERT MODIFICATIONS 10
5.3 WASTE PACKAGE DEGRADATION 11
5.4 THERMAL HYDROLOGY INPUTS 11
5.5 NEW REPOSITORY REGIONS 12
5.5.1 Percolation Flux 12
5.5.2 Distribution of Waste Packages 12
5.5.3 UZ Modifications 13
5.5.4 SZ Breakthrough Curves 13
5.6 DID MODIFICATIONS 13
5.7 CORRECTION OF INPUT FORMATTING ERROR FROM INITIAL RESULTS 14

CONTENTS (continued)

Page
6. RESULTS 14
7. REFERENCES 20
8. ATTACHMENTS 22

1. PURPOSE

This calculation documents the total system performance assessment modeling of Enhanced Design Analyses (EDA) V. EDA V is based on the TSPA-VA base design which has been modified with higher thermal loading, a quartz sand invert, and line loading with 21 PWR waste packages that have $2-\mathrm{cm}$ thick titanium grade 7 corrosion resistant material (CRM) drip shields placed over dual-layer waste packages composed of 'inside out' VA reference material (CRWMS M\&O 1999a). This document details the changes and assumptions made to the VA reference Performance Assessment Model (CRWMS M\&O 1998a) to incorporate the design changes detailed for EDA V. The performance measure for this evaluation is expected value dose-rate history. Time histories of dose rate are presented for EDA V and a Defense in Depth (DID) analysis base on EDA V. Additional details concerning the Enhanced Design Alternative II are provided in the "LADS 3-12 Requests" interoffice correspondence (CRWMS M\&O 1999a).

2. METHOD

Total system performance assessment calculations require coupling and/or information transfer between models that represent the major components of the repository. These models, their coupling, and input parameter values used in the TSPA-VA base case are described in Total System Performance Assessment - Viability Assessment Base Case (CRWMS M\&O, 1998a). The overall computational system remains unchanged for the design feature assessments presented in this report. However, the implementation of specific components of the base case total system model have been changed to account for the effects of the design features. The specific changes to the base case model are described in the following sections of this document.

3. ASSUMPTIONS

The assumptions that formed the basis for the TSPA-VA base case model described in Total System Performance Assessment - Viability Assessment Base Case (CRWMS M\&O, 1998a) are entirely applicable to this calculation with any exceptions detailed below.

Assumptions for EDA V modeling:

3.1 The base case TSPA-VA model is based on a drift spacing of 28 meters and with point loading. For EDA V, the waste packages are placed in a line load and the drift separation is increased to 40 meters with an increased thermal loading of 150 MTU per acre (CRWMS M\&O 1999a, p. 17-18). With increased thermal loading the repository design requires 420 acres of the proposed repository block. The assumptions for this "line load" configuration are inherent within the thermal hydrology data input to the TSPA model (CRWMS M\&O 1999 d , Item 2). It is also assumed that the same number of waste packages will be used as in the base case.
3.2 Fifty percent of the VA percolation flux was used for the thermal hydrology (CRWMS M\&O 1999d, Item 2). This is appropriate based on the TSPA-VA percolation fluxes (CRWMS

M\&O 1998f, p. T2-33, Table 40, and the area fraction of the repository). The inputs to the thermal hydrology and EDA-V calculations are reasonable and consistent.
3.3 With the change in the repository footprint, there are associated changes to repository regions. Unlike the TSPA-VA base case in which six repository regions are defined, the EDA V repository is divided into four distinct regions for the total system model. These regions differ from the base case regions and thus have new properties. Changes to the model to account for the new regions include new average percolation fluxes for each region. new waste package distributions, and changes to definition of capture regions within the unsaturated and saturated zone models to account for the placement of the repository regions.
3.4 The basic waste package design is a 21 PWR waste package. For EDA V the waste package is constructed of two materials in an 'inside out' VA configuration. The inner material is A516 carbon steel, approximately 10 cm thick, and the outer material is approximately 2 cm thick Alloy-22 (CRWMS M\&O 1999a, p. 18). For the total system performance assessment modeling the base case waste package and EBS geometry was modified to account for the new waste package dimensions. All other assumptions for the waste package materials are inherent within the waste package degradation input tables (CRWMS M\&O 1999d. Item 3).
3.5 A drip shield is part of the design feature for EDA V. The drip shields are assumed to have a "mail-box" (inverted U-shaped) configuration and to be placed over the waste packages with a gap between the drip shields and the waste packages to avoid direct contact (CRWMS M\&O 1999a). The drip shields are 2-cm thick and are composed of titanium grade 7. It is assumed for the TSPA model that no flux reaches the waste packages or invert while the drip shield remains intact.
3.6 After drip shield failure it is assumed that the flux into the waste package is scaled to the lesser of the available patch area of the drip shield or the waste package.
3.7 Quartz sand was assumed to be the invert material. The invert dimensions remained identical to the base case configuration. Invert Kd values were assumed to be equal to 0 for quartz sand.
3.8 Invert saturation remained at 0.05 residual saturation (DTN: LL990301804242.083 File: ./noBF_1_50_c_j4_17_03e_03_0_preClose/ NUFT_input/ ldth/ DKMrcktb12-97-afmeanj4_bfs10a) until drip shield failure. The invert saturation was calculated after drip shield failure by using the relative permeability curve assuming gravity flow. The flux into the drift was used for this calculation.

4. USE OF COMPUTER SOFTWARE AND MODELS

4.1 SOFTWARE APPROVED FOR QA WORK

The software used for modeling different components of the repository system in the TSPA-VA total system model are listed in this section. The FEHM software (TBV 564) has not been verified at the time of the calculations and the results from these calculations should be considered TBV (to be verified). The software used for the analyses presented in this document include the same software used for the TSPA-VA base case calculation (CRWMS M\&O. 1998a). No new software was used for the design feature analyses.

WAPDEG and NUFT are used to produce waste package degradation and thermal hydrology inputs to the total system model. These two software programs are mentioned several times in the calculation section of this document but are not described in this software section. This is appropriate because WAPDEG and NUFT are only used to create tabular input for the total system model and are not executed during the total system calculation (Section 5.3 \& Section 5.4).

4.1.1 RIP Version 5.19.01, CSCI: 30055

Installed on a multi-processor Intel Pentium II x86 computer under the Windows NT 4.0 operating system. M\&O CPU Tag Numbers: 115783; 115784; 115785; 115786; 111591; 112378; 114227; 112380; 11369; 113067; and 111593.

Since RIP is used as the integrating shell for combining the different components of the repository system. all the input/output files required for running the TSPA-VA total system model are listed in MO9807MWDRIP00.000 and are discussed in CRWMS M\&O. 1998a. Files that were changed are provided in the DTN: MO9906MWDRIP83.005.
a) The RIP computer code (Golder Associates. 1998) is an appropriate tool to perform the following functions that are part of the total system performance assessment calculations.
b) This software has been validated over the range it was used. (Software Qualification Report, Repository Integration Program, Version 5.19.01. DI: 30047-2003, Rev. 2. CRWMS M\&O, 1998c)
c) This software was obtained from Software Configuration Management (SCM) in accordance with the appropriate procedures.

4.1.2 FEHM Version 2.0.0, CSCI: N/A (TBV 564)

FEHM Version 2.0.0 was compiled as a dynamic link library (DLL) with Digital Visual Fortran 5.0 and is used as an external subroutine (fehmn.dll) to RIP 5.19.01. This DLL was installed on
a multi-processor Intel Pentium II x86 computer under the Windows NT 4.0 operating system. M\&O CPU Tag Numbers: 115783; 115784; 115785; 115786; 111591: 112378: 114227; 112380; 11369; 113067; and 111593.
a) The FEHM computer code is an appropriate tool to perform mass transport simulations in the saturated and unsaturated zones below the potential Yucca Mountain repository (Zyvoloski et.al., 1997, p. 16).
b) This software has not been validated over the range it was used.
c) This software was not obtained from SCM in accordance with the appropriate procedures.

4.2 SOFTWARE ROUTINES

4.2.1 SZ_Convolute, Version 1.0, CSCI: 30038

SZ_Convolute was compiled as a dynamic link library using Digital Visual Fortran 5.0 and is used as an external subroutine (szconv.dll) to RIP. This DLL was installed on a multi-processor Intel Pentium II x86 computer under the Windows NT 4.0 operating system.

The program written in FORTRAN programming language uses a convolution integral technique to combine concentration breakthrough curves based on unit releases with transient radionuclide mass flux at the water table to determine radionuclide concentrations at a specified downstream boundary for which the concentration breakthrough curves were derived. The underlying assumptions in using convolution are: (1) the transport processes and flow fields from the unsaturated zone model and the saturated zone model are independent of one another, (2) the transport processes in the saturated zone model are linear, and (3) steady-state flow is valid for the saturated zone. More information on the formulation and inputs can be found in Soffware Routine Report for SZ_Convolute (CRWMS M\&O, 1998d).

4.2.2 EFDR/DCC, CSCI: 30065 V1.0

External Functions for the Dissolution Rate and Diffusion Coefficient Calculations within RIP (EFDR/DCC) (CRWMS M\&O, 1998e), contains three DLLs (dynamically linked libraries).

SFDiss. GLDiss, and EDCoef were compiled as dynamic link libraries using Visual C ++4.0 to be used as external subroutines (sfdis.dll, gldiss.dll, and edc.dll) to RIP. These DLL's were installed on a multi-processor Intel Pentium II x86 computer under the Windows NT 4.0 Operating system. M\&O CPU Tag Numbers: 115783; 115784; 115785; 115786; 111591; 112378; 114227; 112380; $11369 ; 113067$; and 111593.

SFDiss is a subroutine written in C programming language to calculate the commercial spent nulcear fuel dissolution rate based on the equation developed from experimental data. More details on the formulas used and inputs for this subroutine can be found in Software Routine Report, External Functions for Dissolution Rate and Diffusion Coefficient Calculations within RIP for TSPA-VA (CRWMS M\&O, 1998e).

GLDiss is a subroutine written in C programming language to calculate the glass dissolution rate based on the equation developed from experimental data. More details on the formulas used and inputs for this subroutine can be found in Software Routine Report. External Functions for Dissolution Rate and Diffusion Coefficient Calculations within RIP for TSPA-VA (CRWMS M\&O. 1998e).

EDCoef is a subroutine written in C programming language to calculate the effective diffusion coefficient in an unsaturated porous medium based on the equation developed from experimental data. More details on the formulas used and inputs for this subroutine can be found in Software Routine Report, External Functions for Dissolution Rate and Diffusion Coefficient Calculations within RIP for TSPA-VA (CRWMS M\&O, 1998e).

4.3 MODELS

The TSPA-VA Base Case conceptual model and computer software used in this calculation are described in detail within Total System Performance Assessment - Viability Assessment Base Case (CRWMS M\&O, 1998a). The data tracking numbers for the base case model inputs and outputs as well as the documentation sources for this model are contained in the TSPA-VA REV 01 base case calculation (CRWMS M\&O, 1998a) (DTN: MO9807MWDRIP00.000). The specific model inputs and outputs relevant to this calculation have also been submitted to the data tracking system (DTN: MO9906MWDRIP83.005) and are discussed further in the next section.

The TSPA-VA base case total system model was selected for use in this calculation because it was specifically designed to calculate total system performance (and the modeling process may be adapted to calculate EDA features) in a manner consistent with the information requirements for the LA Design Selection EDA's.

5. CALCULATION

The TSPA-VA base case model and parameters were used with only minor changes to the RIP, FEHM and SZ_ Convolute input files to account for the effects of the design feature. The base case model and parameters are presented in the Total System Performance Assessment-Viahility Assessment Base Case (CRWMS M\&O, 1998a). Components of the base case calculation that were not changed for the design feature analyses are not discussed in this document. Detailed below are only the changes to the base case model that were necessary to evaluate the system performance of EDA V.

In addition to the total system model evaluation with the "inside-out" waste package, a Defense in

Depth (DID) analysis was conducted for EDA V by neutralizing the waste packages.

5.1 DRIP SHIELD MODIFICATIONS

For EDA V a drip shield is part of the design feature. The drip shields are assumed to have a "mailbox" (inverted U-shaped) configuration and to be placed over the waste packages with a gap between the drip shields and the waste packages to avoid direct contact (CRWMS M\&O 1999a). The drip shields are $2-\mathrm{cm}$ thick and are composed of titanium grade 7 . Table *. 338 (* denotes the file prefix for each unique simulation) contains the drip shield failure time history used as input for EDA V. The WAPDEG input file was NE1a5s5EDA5-ds.rip (DTN MO9904MWDWAP73.001). It is assumed for the TSPA model that no flux reaches the waste packages or invert while the drip shield remains intact (Assumption 3.5). In addition, after drip shield failure, the flux through the waste package is assumed to be scaled to the smaller of the patch area on either the drip shield or the waste package (Assumption 3.6). The following modifications were made to the TSPA-VA base case total system model to implement the drip shield design feature:

5.1.1 No flux through waste packages or invert until drip shield failure (Assumption 3.5)

Modifications were made to the base case file to incorporate Assumption 3.5. no flux through the waste package or through the invert until drip shield failure. The following parameters were modified within the RIP front end to implement this assumption:

1) QDRIP1 through QDRIP6 were copied as ZDRIP1 through ZDRIP6.
2) QDRIP1-6 were replaced with ZDRIP1-6 within the 48 defined environments
3) QDRIP1-6 parameters were modified as follows:

QDRIP1 $=\operatorname{if}($ PATDSH $<=0,0$, ZDRIP1 $)$
Effectively, since QPAT1-6 (flux through the patches) = QDRIP1-6 * FACPAT, and PATDSH $=$ average number of patches on the drip shield (see below). QDRIP1-6 $=0$ until drip shield fails. therefore QPAT1-6 $=0$ until drip shield fails, and thus no flux through the waste package or invert.

5.1.2 Flux Scaled to the minimum of the patch area (Assumption 3.5)

The following parameters were created or modified:
TPATWP $=$ total number of patches for a waste package $=889($ CRWMS M\&O 1999b, Item
1, p. 9)
TPATDS $=$ total number of patches for a drip shield $=965($ CRWMS M\&O 1999b, Item 1,
p. 7)

PATDSH = Average number of patches on a drip shield (DTN MO9904MWDWAP73.001) $=$ table(03.time. 38)
WPPAFR $=$ waste package fraction failed by patches $=$ PATB05/TPATWP

DSPAFR $=$ drip shield fraction failed by patches $=$ PATDSH/TPATDS ZPATCH $=$ selector for minimum patches $($ waste package or drip shield $)=$ if((DSPAFR <= WPPAFR), DSPAFR, WPPAFR)

ZPATCH selects the minimum of the patches available for flux. To implement this within the base case total system model the parameter FRACPA was modified as follows:
FRACPA = ZPATCH * UPATCH,

Since FACPAT $=$ FRACPA for values of FRACPA less than or equal to 1 and QPAT (flux through the patches) = QDRIP (flux into the drift) * FACPAT, therefore the flux through the waste package is effectively scaled to the minimum of the available patches.

5.1.3 Juvenile Failure Flux

The base case parameter QPASF7 was modified to eliminate the flux through the package for a juvenile failed package until the drip shield has failed.

$$
\text { QPASF7 }=\text { if }(\text { PATDSH }<=0,0, \text { QDRIP3* }((1 * \text { PAAREA }) / \text { SFAREA }) * \text { UPATCH })
$$

5.2 INVERT MODIFICATIONS

For EDA V, the base case concrete invert was removed and replaced with a quartz sand invert (Assumption 3.7). The following modifications have been made to implement the effect of the sand invert: The Kd values of the INVERT media were set equal to zero for all radionuclides (Assumption 3.6). The porosity of the invert was set to 0.4 based upon thermal hydrology input (DTN: LL990301804242.083 File: /noBF_1_50_c_j4_17_03e_03_0_preClose/ NUFT_input/ Idth/ DKMrcktb12-97-afmean-j4_bfs10a). The residual saturation of the invert was set to $\overline{0} .05$ until drip shield failure, then invert saturation is scaled to the flux through the quartz sand invert (see Attachment I) (Assumption 3.7). To implement this the following parameters were created or modified:

1) UDRIP1 through UDRIP6 to create a parameter for the unit area flux:

UDRIP1 = QDRIP1 / 75 (m^{2}, CRWMS M\&O 1998f, Section 2.5.2.3)
2) SINSF1-6 and SINHL1-6 were modified as follows:

SINSF1 = table(2,UDRIP1,39) = SINHL1, etc.
3) Table 39 ($^{*} . \mathrm{t} 39 .^{*}$ denotes the file prefix for each unique simulation) was created to calculate the invert saturation based on the relative permeability curve assuming gravity flow (see Attachment I for details on this table)

5.3 WASTE PACKAGE DEGRADATION

An 'inside out VA' waste package is used for EDA V. Each waste package was modeled using the WAPDEG code (CRWMS M\&O 1999b, Item 1) and output files of the waste package degradation time histories were supplied as input for this calculation. Table 5.1 outlines the modifications made to the base case file to incorporate the new waste package dimensions and waste package failure histories.

Table 5.1: Waste Package Dimensions and Input Tables for Failure Time Histories (CRWMS M\&O 1999f, Item 1, p 3 of 34; DTN MO9904MWDWAP73.001)

Parameter/Table	Description	EDA V ('inside-out VA') Value
LENSF 1	CSNF package length	$5.275-0.45=4.825$ (21-PWR all)
LENHLW 1	HLW package length	$5.367-0.45=4.917$ (5- HLW/DOE long)
SWPRAD	CSNF package radius	$0.782(21-\mathrm{PWR}$ all)
HWPRAD	HLW package radius	1.015 (5-HLW/DOE long)
Table 20 (always drip) *.t20	Waste package degradation history for always dripping packages	NE1a5s5EDA5-wp.rip
Table 35 (no drip)*.t35	Waste package degradation history for no drip packages	NE0a5s6EDA5-wp.rip

${ }^{1}$ For each waste package the length was adjusted to remove the 'skirt', which is used for handling during emplacement and not evaluated in the total system model.

* denotes the file prefix for each unique simulation

5.4 THERMAL HYDROLOGY INPUTS

Thermal Hydrology calculation results are used to replace table 02 (*.t02) and table 05 (*.t05). These tables contain time histories of temperatures for CSNF and HLW/DOE packages. The temperature time histories are different than the base case because of the change in the repository configuration. The temperature profiles for the repository were modeled for EDA V and the results can be found in (DTN: LL990301804242.083, MO9906SPATHRIP. 000). The temperature values are used for matrix dissolution rate calculations for the total system model.

5.5 NEW REPOSITORY REGIONS

With the increase in thermal loading (150 MTU per acre) there is an associated decrease in repository area. The repository footprint has also been moved to the northeast of the base case footprint (CRWMS M\&O, 1999c). To account the change in repository area, the four repository regions are modified (see assumption 3.3). The change in repository regions creates a change in the average percolation flux for each region, the distribution of packages in the repository and changes to the defined capture regions within the unsaturated and saturated zone models to account for the new locations of the regions. The following sections describe the changes made to account for new repository regions.

5.5. \quad Percolation Flux

New percolation flux values were calculated for the new repository regions. The average percolation fluxes were computed from results from the TOUGH2 site scale models (see Attachment II) for current dry (DRY), long term average (LTA) and superpluvial (SP) climates. For details of this calculation, see Attachment II. Table 5.2 shows the values used for the calculation. The parameters PERD1 to 4, PERL1 to 4 and PERS1 to 4 were modified within the RIP front end for the expected value infiltration (INFMTR=2).

Table 5.2 Expected Value Percolation Flux (mm/yr) for EDA V

	DRY (PERD1 to 4)	LTA (PERL1 TO 4)	SP (PERS1 to 4)
Region 1 (A)	1.53396	20.33244	126.3416
REGION 2 (B)	1.63897	22.72911	118.8644
Region 3 (C)	2.4807	25.59147	95.58013
Region 4 (D)	3.10067	31.37456	108.4336

5.5.2 Distribution of Waste Packages

As part of the average percolation calculation (see section 5.5.1 and Attachment II), the fractional area of each repository region was also determined. These fractional areas are used to redistribute the waste packages in the regions for EDA V. As with the base case model, there are 7760 CSNF packages, 1663 HLW packages and 2546 DOESF package (see assumption 3.1). Table 5.3 shows the distribution of the waste packages based on the new fractional areas.

Table 5.3 Regional Waste Package Distribution for EDA V

	Fractional Area	CSNF Packages	HLW Packages	DOESF Packages
Region 1 (A)	0.182938	1420	304	466
Region 2 (B)	0.208171	1615	346	530
Region 3 (C)	0.301401	2339	501	767
Region 4 (D)	0.30749	2386	512	783
Total	1	7760	1663	2546

5.5.3 UZ Modifications

The UZ model was modified to account for the changes in the repository areas. With the new repository areas, the location that particles enter and leave the UZ model were modified. The nodes associated with the repository and water table were changed for each region. The new set of nodes for each region (repository and water table regions) were modified in the FEHM input file 'fmQb.zone6'. Details of the methodology used to select the new nodes at the repository and water table are described in CRWMS M\&O 1999e.

5.5.4 SZ Breakthrough Curves

With the change in the repository area, the saturated zone breakthrough curves were modified to account for new capture area at the water table. The scaling factor at the top of the SZ curve files was modified for all of the stream tubes to account for the change in water table area for each region. Details of the calculation are described in Attachment III.

5.6 DID MODIFICATIONS

A single Defense in Depth scenarios was run for the EDA V model by neutralizing the waste package. This calculation is provided to determine the robustness of the total system by removing an important barrier to radionuclide release. This section provides details about the changes made to the model to account for the neutralization of the waste package.

Neutralizing the waste package assumes that the entire inventory is available for transport at time zero. For each source term group the primary failure mode was set to degenerate with a probability equal to 1 at time zero. The juvenile failure source term group SF5 was deleted packages within this source term group were moved to region 4 (SF4). With no waste packages. diffusive releases were assumed to occur through an area equal to half the surface area of the package (either HLW/DOESF or SF package).

ADIFPI $=0$ (diffusive area through pits)
FACPIT $=0$ (pit fraction)
WPAHLW $=\mathrm{Pi}^{*}$ HWPRAD ${ }^{*}$ LENHLW
WPASF $=\mathrm{Pi}^{*}$ SWPRAD $*$ LENSF

Flux through the waste form was scaled to the patch area of the drip shield. Prior to drip shield failure, there is no advective flux through the waste form.

For high level waste and DOESF pathways the area for diffusion through patches (ADIFPA) was set equal to WPAHLW, and for spent fuel pathways ADIFPA was set to WPASF. Advective release was scaled to the flux able to pass through the drip shield. ZPATCH was set equal to the DSPAFR. the drip shield patch fraction. In addition, the following parameters were modified:

```
VWSF = VWRNS * PORWF * SATWF
VWRNS = VRODSF
VWHLW=VWRNH * PORWF * SATWF
VWRNH = VGLSHL
VWDSF = VWRND * PORWF * SATWF
VWRND = VRODDS
```


5.7 CORRECTION OF INPUT FORMATTING ERROR FROM INITIAL RESULTS

After completion of the "check copy" of this document, a mistake was discovered in the format of the temperature input files (*.t02 and *.t05, see section 5.4 for description of these files). The results became part of the record for the QAP 3-12 Input Design Transmittal for "Enhanced Design Alternatives I,II, IIIa, IIIb,IV, and V. Best availahle data from NLFT (Thermal Hydrology), WAPDEG (Waste Package Degradation) and RIP (Total System Performance Assessment) computations" (CRWMS M\&O 1999d). The temperature inputs affect the matrix dissolution rate. With the incorrect format, the temperature values for repository regions 3 and 4 were 0 degrees Celsius after 5,000 years while regions 1 and 2 were provided with the histories for regions 3 and 4 after 5000 years. The correction of the temperature input file should have little effect on the total system results. Results from using both the correct and incorrect temperature input files are provided in Section 6 for completeness.

6. RESULTS

Since unqualified inputs were used in the development of the results presented in this section. they should be considered TBV. This document will not directly support any construction, fabrication, or procurement activity, and therefore, the inputs and outputs are not required to be procedurally controlled as TBV. However, any use of the data from this analysis for inputs into documents supporting construction, fabrication, or procurement is required to be controlled as TBV in accordance with appropriate procedures.

EDA V results are presented for 10,000 year and $1,000,000$ year total system performance assessment model simulations. Figures 6.1 and 6.2 contain dose rates per year for the EDA V case and DID waste package neutralization case. The dose rate for the neutralized waste package case is several orders of magnitude higher than the EDA V case for the first 10.000 years following repository closure (Figure 6.1). The dose rate for the DID case is higher than the waste package case for the first 400,000 years (Figure 6.2). Both cases have a similar dose rate after
400.000 years, except around the second SP climate (around 750.000 years after repository closure) were the DID dose rate is nearly an order of magnitude higher than the case with a waste package.

Figures 6.3 and 6.4 show the results using the incorrect format for the temperature input files (see Section 5.7 above). These results were provided in CRWMS M\&O 1999d. The results are very similar to the results presented in Figure 6.1 and 6.2 and any conclusions that were made about EDA V based on the initial incorrect results should not be changed.

Figure 6.1 10,000-Year Dose Rate Histories for EDA \vee Analyses.

EDA V
1,000,000-yr Total Dose-Rate History
All Pathways, 20 km

Figure 6.2 1,000,000-Year Dose Rate Histories for EDA V Analyses.

EDA $\mathbf{~ (w / i n c o r r e c t ~ t e m p e r a t u r e ~ i n p u t ~ f i l e s) ~}$ 10,000-yr Total Dose-Rate History All Pathways, 20 km

Figure 6.3 Initial 10,000-Year Dose Rate Histories for EDA V Analyses Using Incorrect Temperature Input Files.

EDA \mathbf{V} (w/ incorrect temperature input files) 1,000,000-yr Total Dose-Rate History

All Pathways, 20 km

Figure 6.4 Initial 1,000,000-Year Dose Rate Histories for EDA V Analyses Using Incorrect Temperature Input Files.

7. REFERENCES

CRWMS M\&O 1998a. Total System Performance Assessment - Viahility Assessment Base Case. B00000000-01717-0210-00011 REV 01. Las Vegas, Nevada: CRWMS M\&O. ACC: MOL. 19981202.0279 .

CRWMS M\&O 1998b. Fitting of the Data for Diffusion Coefficient in Unsaturated Zone Porous Media. B00000000-01717-0210-00026 REV 00. Las Vegas, Nevada: CRWMS M\&O. ACC: MOL. 19981014.0003 .

CRWMS M\&O 1998c. Software Qualification Report, Repository Integration Program (RIP), Version 5.19.01. Software Configuration Identifier (CSCI): 30055 V.5.19.01. DI: 30047-2003 REV 02. Las Vegas, Nevada: CRWMS M\&O. ACC: MOL.19980916.0337.

CRWMS M\&O 1998d. Software Routine Report for SZ_Convolute. Version 1.0 DI: 30038-2999 REV 01. Las Vegas, Nevada: CRWMS M\&O. ACC: MOL.19981103.0084.

CRWMS M\&O 1998e. Software Routine Report, External Functions for Dissolution Rate and Diffusion Coefficient Calculations within RIP. Version 1.0 DI: 30065-2999 REV 00. Las Vegas, Nevada: CRWMS M\&O. ACC: MOL.19981120.0103.

CRWMS M\&O. 1998f. Total System Performance Assessment - Viability Assessment (TSPA-VA) Analyses Technical Basis Document - Chapter 2. Unsaturated Zone Hydrology Model. B00000000-01717-4301-00002 REV 01. Las Vegas, Nevada: CRWMS M\&O. ACC: MOL. 19981008.0002

CRWMS M\&O 1998g. Total System Performance Assessment-Viahility Assessment (TSPA-VA) Analyses Technical Basis Document - Chapter 8, Saturated Zone Flow and Transport. B00000000-01717-4301-00008 REV 01. Las Vegas, Nevada: CRWMS M\&O. ACC: MOL.19981008.0008.

CRWMS M\&O 1999a. Design Input Request for LADS Phase II EDA Evaluations. Input Tracking No. LAD-SEI-99114.R. Las Vegas, Nevada: CRWMS M\&O. ACC: MOL.19990317.0072.

CRWMS M\&O 1999b. Design Input Transmittal for Performance Assessment RIP Input Table from WAPDEG for EDA V. Input Tracking No. SSR-PA-99117.T. Las Vegas, Nevada: CRWMS M\&O. ACC: MOL. 19990402.0202.

CRWMS M\&O 1999c. Design Input Transmittal for Performance Assessment for Enhanced Design Alternative (EDA), Option V. Input Tracking No. SSR-PA-99117.Ra. Las Vegas. Nevada: CRWMS M\&O. ACC: MOL.19990226.0323.

CRWMS M\&O 1999d. Design Transmittal for Enhanced Design Alternatives I,II. IIIa. IIIb.W. and V. Best available data from NUFT (Thermal Hydrology), WAPDEG (Waste Package Degradation)
and RIP (Total System Performance Assessment) computations. SSR-PA-99117.Ta. Las Vegas. Nevada: CRWMS M\&O. ACC: MOL.19990402.0201.

CRMWS M\&O 1999e. Design Input Transmittal for LADS EDA-V Repository Subregion Nodes. Saturated Zone Subregion nodes in Repository Footprint, and Extended Saturated Zone Subregion Nodes. Input Tracking No. PA-PA-99215.T. Las Vegas, Nevada: CRWMS M\&O. ACC: MOL. 19990610.0181 .

CRWMS M\&O 1999f. Design input Transmittal for Waste Stream Information for LADS, Phase 2, EDAs. Input Tracking No. PA-WP-99142.T. Las Vegas, Nevada: CRWMS M\&O. ACC: MOL. 19990315.0047.

CRWMS M\&O 1999g. Design Input Transmittal for Peak Drift Wall and Waste Package Temperatures for EDAs I, II, III, IV, and V. Input Tracking No. SSR-PA-99085.Tc. Las Vegas. Nevada: CRWMS M\&O. ACC: MOL.19990421.0163.

CRWMS M\&O 1999h. Design Input Transmittal for LADS EDA I, II, and V SZ Flux Calculations. Input Tracking No. PA-PA-99221.T. Las Vegas, Nevada: CRWMS M\&O. ACC: MOL.19990615.0209.

CRWMS M\&O 1999i. Interoffice Correspondence "ASAP (Versions 2. 3 and 4) Software Routine Documentation". LV.PA.JAM.03/99-041. Las Vegas. Nevada: CRWMS M\&O. ACC: MOL.19990409.0092.
de Marsily, G. 1986. Quantitative Hydrogeology: groundwater hydrology for engineers. Orlando, Florida: Academic Press Inc. TIC: 208450.

Golder Associates 1998. RIP Integrated Probabilistic Simulator for Environmental Systems: Theory Manual and User's Guide. Redmond, Washington: Golder Associates Inc. TIC: 238560.

Mualem, Y. 1976. "A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media". Water Resources Research, Vol. 12, No. 3, 513-522. Washington, DC: American Geophysical Union. TIC: 217339.
van Genuchten, M. 1980. "A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils". Soil Sci. Soc. Am. Journal, 44, 892-898. Madison. Wisconsin: Soil Science Society of America. TIC: 217327.

Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; and Trease, L.L. 1997. Summary of the Models and Methods for the FEHM Application- A Finite-Element Heat - and Mass - Transfer Code. LA-13307MS. Los Alamos, New Mexico: Los Alamos National Laboratory. TIC: 235587.

8. ATTACHMENTS

I Calculation of Invert Saturation Under Dripping Conditions

II Calculation of Average Percolation Rates for Designated Repository Sub-Areas of EDA-V

III Modification of Saturated Zone Breakthrough Curves

Attachment I

Calculation of Invert Saturation Under Dripping Conditions

Calculation of Invert Saturation Under Dripping Conditions

Introduction

Liquid saturation in the invert material is used to determine the diffusion coefficient (Fitting of the Data for Diffusion Coefficients in Unsaturated Porous Media. CRWMS M\&O, 1998b), required for calculating the diffusive transport of radionuclides through the invert. For total system performance assessment (TSPA) calculations done in support of the Enhanced Design Alternatives (EDA) study, the liquid saturation of the invert material is assumed to be at the residual level $\left(S_{r}\right)$ till the breach of the dripshield. After the failure of the dripshield, the flux entering the drift is assumed to be in contact with the invert material and the liquid saturation in the invert material corresponding to gravity flow is used for the diffusion coefficient calculation. This is done by equating the hydraulic conductivity of the invert material to the flux entering the drift and calculating the saturation corresponding to this hydraulic conductivity value.

Calculation

All the equations and numerical calculations used to calculate the saturation in the invert under dripping conditions are presented in this section.

The relative hydraulic conductivity $\left(K_{r}\right)$ is defined as (Mualem, 1976, equation 1):

$$
\begin{equation*}
K_{r}=\frac{K}{K_{s a t}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
K=K_{r} \cdot K_{v u} \tag{2}
\end{equation*}
$$

where hydraulic conductivity K, is a function of the saturation and $K_{\text {sat }}$ is the hydraulic conductivity in saturated conditions.

Effective saturation S_{e}, is defined as (Mualem, 1976, equation 2):

$$
\begin{equation*}
S_{e}=\frac{S-S_{r}}{S_{\max }-S_{r}} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
S=\left(S_{\text {max }}-S_{r}\right) S_{r}+S_{r} \tag{4}
\end{equation*}
$$

where S is the actual saturation, S_{r} is the residual saturation and $S_{\max }$ is the maximum saturation. Further, relative hydraulic conductivity is defined as (van Genuchten. 1980. equation 8):

$$
\begin{align*}
& K_{r}=S_{c}^{1 / 2}\left[1-\left(1-S_{e}^{1 ; m}\right)^{\prime \prime \prime}\right]^{2} \tag{5}\\
& m=1-\frac{1}{\beta} \quad(0<m<1) \tag{6}
\end{align*}
$$

where m and β are the van Genuchten pore size distribution parameters.

Using intrinsic permeability, saturated hydraulic conductivity can be calculated as (de Marsily, 1986. page 60)

$$
\begin{equation*}
K_{v a l}=\frac{k_{v a l} \cdot g}{v} \tag{7}
\end{equation*}
$$

where g is the acceleration due to gravity and v is the kinematic viscosity.

From thermal hydrology calculations (CRWMS M\&O 1999g and DTN: LL990301804242.083). m $=0.7636, S_{r}=0.05, S_{\max }=1.0$ and intrinsic permeability $\left(k_{s a t}\right)=1.6 \mathrm{E}-11 \mathrm{~m}^{2}$.
$k_{\text {sat }}=1.6 \times 10^{-11} \mathrm{~m}^{2}$
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (de Marsily, 1986, p. 412)
$v=10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ (de Marsily. 1986, p. 413. Table A.2.4)
$K_{s a t}=1.6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$

Combining the above information with equations $2,4,5$ and 6 :

$$
\begin{equation*}
S=0.95 \cdot S_{r}+0.05 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
K=\left(1.6 \times 10^{-4}\right) \cdot\left(S_{i}^{1: 2}\left[1-\left(1-S_{i}^{1.31}\right)^{0.76 .36}\right]^{2}\right) \tag{9}
\end{equation*}
$$

Using Microsoft Excel-97, a series of effective saturation $\left(S_{e}\right)$ values was generated from 0 to 0.1 at an interval of 0.001 (see Table 1). Using equation 8, saturation values for the corresponding effective saturation values was calculated in the second column. Hydraulic conductivity in m / s is calculated using equation 9 (third column). The last column contains the hydraulic conductivity values in $m / y r$. Assuming gravity flow, the flux into the drift was equated to the hydraulic conductivity value and the corresponding saturation value (second column) was used for diffusion coefficient calculation.

Table 1 Hydraulic conductivity vs. saturation values

Effective Saturation	Saturation	Hydraulic Conductivity	Hydraulic Conductivity
$\boldsymbol{S}_{\boldsymbol{e}}$	\boldsymbol{S}	$\boldsymbol{K}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{K}(\mathbf{m} / \mathbf{y r})$
0	0.0500	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
0.001	0.0510	$4.07 \mathrm{E}-14$	$1.28 \mathrm{E}-06$
0.002	0.0519	$3.54 \mathrm{E}-13$	$1.12 \mathrm{E}-05$
0.003	0.0529	$1.25 \mathrm{E}-12$	$3.96 \mathrm{E}-05$
0.004	0.0538	$3.08 \mathrm{E}-12$	$9.71 \mathrm{E}-05$
0.005	0.0548	$6.18 \mathrm{E}-12$	$1.95 \mathrm{E}-04$
0.006	0.0557	$1.09 \mathrm{E}-11$	$3.44 \mathrm{E}-04$
0.007	0.0567	$1.76 \mathrm{E}-11$	$5.57 \mathrm{E}-04$
0.008	0.0576	$2.68 \mathrm{E}-11$	$8.44 \mathrm{E}-04$
0.009	0.0586	$3.87 \mathrm{E}-11$	$1.22 \mathrm{E}-03$
0.01	0.0595	$5.37 \mathrm{E}-11$	$1.69 \mathrm{E}-03$
0.011	0.0605	$7.23 \mathrm{E}-11$	$2.28 \mathrm{E}-03$
0.012	0.0614	$9.49 \mathrm{E}-11$	$2.99 \mathrm{E}-03$
0.013	0.0624	$1.22 \mathrm{E}-10$	$3.84 \mathrm{E}-03$
0.014	0.0633	$1.54 \mathrm{E}-10$	$4.84 \mathrm{E}-03$
0.015	0.0643	$1.90 \mathrm{E}-10$	$6.00 \mathrm{E}-03$
0.016	0.0652	$2.33 \mathrm{E}-10$	$7.34 \mathrm{E}-03$
0.017	0.0662	$2.81 \mathrm{E}-10$	$8.87 \mathrm{E}-03$
0.018	0.0671	$3.36 \mathrm{E}-10$	$1.06 \mathrm{E}-02$
0.019	0.0681	$3.98 \mathrm{E}-10$	$1.26 \mathrm{E}-02$
0.02	0.0690	$4.67 \mathrm{E}-10$	$1.47 \mathrm{E}-02$
0.021	0.0700	$5.44 \mathrm{E}-10$	$1.72 \mathrm{E}-02$
0.022	0.0709	$6.29 \mathrm{E}-10$	$1.98 \mathrm{E}-02$

0.023	0.0719	$7.23 \mathrm{E}-10$	$2.28 \mathrm{E}-02$
0.024	0.0728	$8.26 \mathrm{E}-10$	$2.60 \mathrm{E}-02$
0.025	0.0738	$9.38 \mathrm{E}-10$	$2.96 \mathrm{E}-02$
0.026	0.0747	$1.06 \mathrm{E}-09$	$3.34 \mathrm{E}-02$
0.027	0.0757	$1.19 \mathrm{E}-09$	$3.76 \mathrm{E}-02$
0.028	0.0766	$1.34 \mathrm{E}-09$	$4.21 \mathrm{E}-02$
0.029	0.0776	$1.49 \mathrm{E}-09$	$4.70 \mathrm{E}-02$
0.03	0.0785	$1.66 \mathrm{E}-09$	$5.23 \mathrm{E}-02$
0.031	0.0795	$1.84 \mathrm{E}-09$	$5.79 \mathrm{E}-02$
0.032	0.0804	$2.03 \mathrm{E}-09$	$6.40 \mathrm{E}-02$
0.033	0.0814	$2.23 \mathrm{E}-09$	$7.04 \mathrm{E}-02$
0.034	0.0823	$2.45 \mathrm{E}-09$	$7.73 \mathrm{E}-02$
0.035	0.0833	$2.68 \mathrm{E}-09$	$8.46 \mathrm{E}-02$
0.036	0.0842	$2.93 \mathrm{E}-09$	$9.24 \mathrm{E}-02$
0.037	0.0852	$3.19 \mathrm{E}-09$	$1.01 \mathrm{E}-01$
0.038	0.0861	$3.47 \mathrm{E}-09$	$1.09 \mathrm{E}-01$
0.039	0.0871	$3.76 \mathrm{E}-09$	$1.19 \mathrm{E}-01$
0.04	0.0880	$4.07 \mathrm{E}-09$	$1.28 \mathrm{E}-01$
0.041	0.0890	$4.40 \mathrm{E}-09$	$1.39 \mathrm{E}-01$
0.042	0.0899	$4.74 \mathrm{E}-09$	$1.50 \mathrm{E}-01$
0.043	0.0909	$5.10 \mathrm{E}-09$	$1.61 \mathrm{E}-01$
0.044	0.0918	$5.48 \mathrm{E}-09$	$1.73 \mathrm{E}-01$
0.045	0.0928	$5.88 \mathrm{E}-09$	$1.86 \mathrm{E}-01$
0.046	0.0937	$6.30 \mathrm{E}-09$	$1.99 \mathrm{E}-01$
0.047	0.0947	$6.74 \mathrm{E}-09$	$2.13 \mathrm{E}-01$
0.048	0.0956	$7.20 \mathrm{E}-09$	$2.27 \mathrm{E}-01$
0.049	0.0966	$7.68 \mathrm{E}-09$	$2.42 \mathrm{E}-01$
0.05	0.0975	$8.18 \mathrm{E}-09$	$2.58 \mathrm{E}-01$
0.051	0.0985	$8.70 \mathrm{E}-09$	$2.74 \mathrm{E}-01$
0.052	0.0994	$9.25 \mathrm{E}-09$	$2.92 \mathrm{E}-01$
0.053	0.1004	$9.81 \mathrm{E}-09$	$3.09 \mathrm{E}-01$
0.054	0.1013	$1.04 \mathrm{E}-08$	$3.28 \mathrm{E}-01$
0.055	0.1023	$1.10 \mathrm{E}-08$	$3.47 \mathrm{E}-01$
0.056	0.1032	$1.17 \mathrm{E}-08$	$3.68 \mathrm{E}-01$
0.057	0.1042	$1.23 \mathrm{E}-08$	$3.89 \mathrm{E}-01$
0.058	0.1051	$1.30 \mathrm{E}-08$	$4.10 \mathrm{E}-01$
0.059	0.1061	$1.37 \mathrm{E}-08$	$4.33 \mathrm{E}-01$
0.06	0.1070	$1.45 \mathrm{E}-08$	$4.56 \mathrm{E}-01$
0.061	0.1080	$1.52 \mathrm{E}-08$	$4.80 \mathrm{E}-01$
0.062	0.1089	$1.60 \mathrm{E}-08$	$5.05 \mathrm{E}-01$
0.063	0.1099	$1.68 \mathrm{E}-08$	$5.31 \mathrm{E}-01$
0.064	0.1108	$1.77 \mathrm{E}-08$	$5.58 \mathrm{E}-01$

0.065	0.1118	$1.86 \mathrm{E}-08$	$5.86 \mathrm{E}-01$
0.066	0.1127	$1.95 \mathrm{E}-08$	$6.15 \mathrm{E}-01$
0.067	0.1137	$2.04 \mathrm{E}-08$	$6.44 \mathrm{E}-01$
0.068	0.1146	$2.14 \mathrm{E}-08$	$6.75 \mathrm{E}-01$
0.069	0.1156	$2.24 \mathrm{E}-08$	$7.06 \mathrm{E}-01$
0.07	0.1165	$2.34 \mathrm{E}-08$	$7.39 \mathrm{E}-01$
0.071	0.1175	$2.45 \mathrm{E}-08$	$7.72 \mathrm{E}-01$
0.072	0.1184	$2.56 \mathrm{E}-08$	$8.07 \mathrm{E}-01$
0.073	0.1194	$2.67 \mathrm{E}-08$	$8.43 \mathrm{E}-01$
0.074	0.1203	$2.79 \mathrm{E}-08$	$8.79 \mathrm{E}-01$
0.075	0.1213	$2.91 \mathrm{E}-08$	$9.17 \mathrm{E}-01$
0.076	0.1222	$3.03 \mathrm{E}-08$	$9.56 \mathrm{E}-01$
0.077	0.1232	$3.16 \mathrm{E}-08$	$9.96 \mathrm{E}-01$
0.078	0.1241	$3.29 \mathrm{E}-08$	$1.04 \mathrm{E}+00$
0.079	0.1251	$3.42 \mathrm{E}-08$	$1.08 \mathrm{E}+00$
0.08	0.1260	$3.56 \mathrm{E}-08$	$1.12 \mathrm{E}+00$
0.081	0.1270	$3.70 \mathrm{E}-08$	$1.17 \mathrm{E}+00$
0.082	0.1279	$3.84 \mathrm{E}-08$	$1.21 \mathrm{E}+00$
0.083	0.1289	$3.99 \mathrm{E}-08$	$1.26 \mathrm{E}+00$
0.084	0.1298	$4.15 \mathrm{E}-08$	$1.31 \mathrm{E}+00$
0.085	0.1308	$4.30 \mathrm{E}-08$	$1.36 \mathrm{E}+00$
0.086	0.1317	$4.46 \mathrm{E}-08$	$1.41 \mathrm{E}+00$
0.087	0.1327	$4.63 \mathrm{E}-08$	$1.46 \mathrm{E}+00$
0.088	0.1336	$4.80 \mathrm{E}-08$	$1.51 \mathrm{E}+00$
0.089	0.1346	$4.97 \mathrm{E}-08$	$1.57 \mathrm{E}+00$
0.09	0.1355	$5.15 \mathrm{E}-08$	$1.62 \mathrm{E}+00$
0.091	0.1365	$5.33 \mathrm{E}-08$	$1.68 \mathrm{E}+00$
0.092	0.1374	$5.51 \mathrm{E}-08$	$1.74 \mathrm{E}+00$
0.093	0.1384	$5.70 \mathrm{E}-08$	$1.80 \mathrm{E}+00$
0.094	0.1393	$5.90 \mathrm{E}-08$	$1.86 \mathrm{E}+00$
0.095	0.1403	$6.10 \mathrm{E}-08$	$1.92 \mathrm{E}+00$
0.096	0.1412	$6.30 \mathrm{E}-08$	$1.99 \mathrm{E}+00$
0.097	0.1422	$6.51 \mathrm{E}-08$	$2.05 \mathrm{E}+00$
0.098	0.1431	$6.72 \mathrm{E}-08$	$2.12 \mathrm{E}+00$
0.099	0.1441	$6.94 \mathrm{E}-08$	$2.19 \mathrm{E}+00$
0.1	0.1450	$7.16 \mathrm{E}-08$	$2.26 \mathrm{E}+00$

Attachment II
 Calculation of Average Percolation Rates for Designated Repository SubAreas of EDA-V

Calculation of Average Percolation Rates for Designated Repository Sub-Areas of EDA-V:

1. Purpose:

The objective of this calculation is to provide average percolation rates for the designated repository sub-areas of enhanced design alternative (EDA) V.

2. Method:

Step 1. Using as input a given list of FEHM node identifiers of the repository nodes and their designated zones, a computer program identifies the corresponding TOUGH2 node identifiers (only TOUGH2 column identifiers for the TOUGH2 grid are needed, because the elevation is the repository horizon).

Step 2. Using as inputs the TOUGH2 node identifiers. TOUGH2 connection data at the repository horizon (between layer ' m ' and layer ' n ' in the TOUGH2 UZ grid). and the water flux at these connections (extracted from TOUGH2 outputs), a computer program calculates the average percolation rates for the designated repository sub-areas.

3. Assumptions:

N/A.

4. Computer Programs:

Two programs have been used in the calculations:
(1) The computer program used in Step 1 described above is named as 'fehm-tough_node5.f". version 1.0. Two input files are needed; one is a list of FEHM node identifiers, the coordinates and the zone associations. and the other is a standard ELEME input section for TOUGH2. The output file contains, in a format required by 'hgram_eda5.f' (see below), the TOUGH2 identifiers for each of the designated zones. The transition from FEHM identifiers to TOUGH2 identifiers are based on comparisons of coordinates.

A code listing of this program and example input and output files are provided in Appendix I. This is a program performing rather straightforward procedures, therefore, no version control is necessary.

The executable of this program has been obtained by using the HP FORTRAN 90/S700 compiler (version: B.10.20.00).

The program has been verified via visual inspections.
(2) The computer program used in Step 2 described above is named as 'hgram_eda5.f. version 1.0 .

This program performs calculation procedures essentially identical to the program. 'hgram.f' (CSCI: 30066 V 1.0). It differs from 'hgram.f' only in a few comment lines about the specifications of two parameters and a requirement on the compatibility of flux file and connection file, and in a calculation and printout of total repository area currently counted'. Since the procedures used in "hgram.f' has been verified, the program 'hgram_eda5.f' needs no further verification.

A code listing of this program is given in Appendix II.
The executable of this program has been obtained by using the HP FORTRAN 90/S700 compiler (version: B. 10.20.00).

5. Calculation:

(1). Input and output files used for identifying TOUGH2 node identifiers from designated FEHM identifiers:

Input files:

* eda5node.dat:

A typical line contains zone identifier for a node, x, y, z coordinates. FEHM node identifier.

Total number of zones $=4$, identified as $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .

* elem_bas_dkm.dat:

A typical ELEME section of input for the TOUGH2 UZ grid (DTN: LB971100001254.001).
Output file:

* column ed5.dat:

For each of the zones, list of the column identifiers of those TOUGH2 nodes that correspond to the designated FEHM nodes in 'eda5node. dat'; each list is ended with '\&\&\&'.
(2). Input and output files for calculating the average percolation rates for the designated zones:

Input files:

* column_ed5.dat:

For each of the zones, list of the column identifiers of those TOUGH2 nodes that correspond to the designated FEHM nodes in 'eda5node.dat', each list is ended with '\&\&\&'.

* repof bas.con:

A typical CONNE section of input for the TOUGH2 base-case UZ grid (DTN: LB971100001254.001).

* repof_fl.con:

A typical CONNE section of input for the TOUGH2 long-term average UZ grid (DTN: LB971100001254.001).

* repof_f2.con:

A typical CONNE section of input for the TOUGH2 super pluvial UZ grid (DTN: LB971100001254.001).

* mnaqb_p.rep (DTN: LB971212001254.001):

This file is obtained by extracting the flux data from the TOUGH2 TSPA-VA base-case present-dayinfiltration output, which is identified with the DTN given in the parentheses. Ignore the first 4 columns; the last column contains the fluxes (at the repository horizon, in $\mathrm{kg} / \mathrm{sec}$) listed in the exact same order as the corresponding connections given in 'repof_bas.con', where these fluxes are defined.

* mnaqbfl.repfract (DTN: LB971212001254.001):

Similar to 'mnaqb_p.rep', but for the long-term average climate.

* mnaqbf2.repfract (DTN: LB971212001254.001):

Similar to 'mnaqb_p.rep', but for the super pluvial climate.

6. Results:

* mnaqb_p_rep.out: the results including the average percolation rates for 'mnaqb_p.rep'.
flux filename $=$ mnaqb_p.rep
******* domain ID=domA
number of blocks in the domain $=14$
area-total for the domain $\left(\mathrm{m}^{*} \mathrm{~m}\right)=365340.0$
area-fraction of total repository $=0.182938$
average percolation flux $(\mathrm{mm} / \mathrm{yr})=1.53396$
total repository area currently counted $=365340.0$
sum of current dom-area fractions: sum_tot $=0.182938$
******* domain ID=domB
number of blocks in the domain $=64$
area-total for the domain $\left(\mathrm{m}^{*} \mathrm{~m}\right)=415733.0$
area-fraction of total repository $=0.208171$
average percolation flux ($\mathrm{mm} / \mathrm{yr}$) $=1.63897$
total repository area currently counted $=781073.0$
sum of current dom-area fractions: sum_tot $=0.391109$
******* domain ID=domC
number of blocks in the domain $=19$
area-total for the domain $\left(\mathrm{m}^{*} \mathrm{~m}\right)=601921.0$
area-fraction of total repository $=0.301401$
average percolation flux $(\mathrm{mm} / \mathrm{yr})=2.4807$
total repository area currently counted $=1382994$.
sum of current dom-area fractions: sum_tot $=0.69251$
******* domain ID=domD
number of blocks in the domain $=11$
area-total for the domain $\left(\mathrm{m}^{*} \mathrm{~m}\right)=614080.0$
area-fraction of total repository $=0.30749$
average percolation flux ($\mathrm{mm} / \mathrm{yr}$) $=3.10067$
total repository area currently counted $=1997074$.
sum of current dom-area fractions: sum_tot $=1.0$
* mnaqbf1_p_rep.out: the results including the average percolation rates for 'mnaqbf1.repfract'.
flux filename $=$ mnaqbfl .repfract
******* domain ID=domA
number of blocks in the domain $=14$
area-total for the domain $\left(\mathrm{m}^{*} \mathrm{~m}\right)=365340.0$
area-fraction of total repository $=0.182938$
average percolation flux $(\mathrm{mm} / \mathrm{yr})=20.33244$
total repository area currently counted $=365340.0$
sum of current dom-area fractions: sum_tot $=0.182938$
******* domain ID=domB
number of blocks in the domain $=64$
area-total for the domain $\left(\mathrm{m}^{*} \mathrm{~m}\right)=415733.0$
area-fraction of total repository $=0.208171$
average percolation flux ($\mathrm{mm} / \mathrm{yr}$) $=22.72911$
total repository area currently counted $=781073.0$
sum of current dom-area fractions: sum_tot $=0.391109$
******* domain ID=domC
number of blocks in the domain= 19
area-total for the domain $\left(\mathrm{m}^{*} \mathrm{~m}\right)=601921.0$
area-fraction of total repository $=0.301401$
average percolation flux ($\mathrm{mm} / \mathrm{yr}$) $=25.59147$
total repository area currently counted $=1382994$.
sum of current dom-area fractions: sum_tot $=0.69251$
******* domain ID=domD
number of blocks in the domain= 11
area-total for the domain $\left(\mathrm{m}^{*} \mathrm{~m}\right)=614080.0$
area-fraction of total repository $=0.30749$
average percolation flux ($\mathrm{mm} / \mathrm{yr}$) $=31.37456$
total repository area currently counted $=1997074$.
sum of current dom-area fractions: sum_tot $=1.0$
* mnaqbf2_p_rep.out: the results including the average percolation rates for 'mnaqbf2.repfract'.
flux filename=mnaqbf2.repfract
******* domain ID=domA
number of blocks in the domain= 14
area-total for the domain $\left(\mathrm{m}^{*} \mathrm{~m}\right)=365340.0$
area-fraction of total repository $=0.182938$
average percolation flux ($\mathrm{mm} / \mathrm{yr}$) $=126.3416$
total repository area currently counted $=365340.0$
sum of current dom-area fractions: sum_tot $=0.182938$
******* domain ID=domB
number of blocks in the domain= 64
area-total for the domain $\left(\mathrm{m}^{*} \mathrm{~m}\right)=415733.0$
area-fraction of total repository $=0.208171$
average percolation flux ($\mathrm{mm} / \mathrm{yr}$) $=118.8644$
total repository area currently counted $=781073.0$
sum of current dom-area fractions: sum_tot $=0.391109$
******* domain $\mathrm{ID}=$ domC
number of blocks in the domain= 19
area-total for the domain $\left(\mathrm{m}^{*} \mathrm{~m}\right)=601921.0$
area-fraction of total repository $=0.301401$
average percolation flux ($\mathrm{mm} / \mathrm{yr}$) $=95.58013$
total repository area currently counted $=1382994$.
sum of current dom-area fractions: sum_tot $=0.69251$
******* domain ID=domD
number of blocks in the domain= 11
area-total for the domain $\left(\mathrm{m}^{*} \mathrm{~m}\right)=614080.0$
area-fraction of total repository $=0.30749$
average percolation flux ($\mathrm{mm} / \mathrm{yr}$) $=108.4336$
total repository area currently counted $=1997074$.
sum of current dom-area fractions: sum_tot $=1.0$

7. References:

N/A.

8. Appendix I: Code Listing of fehm-tough_node5.f, version 1.0, and Example Input and Output Files.

(1) Code Listing:

```
c To Eind the corresonding Touge rodes for given EEHy rodes defired
c irto subregions. Eor the FOUGH2 nodes, only column idertifiers
c are output to a file.
C
t the output file rame for unit-21,
~
    parameter (num_dkm=37604*2, node end=3610:)
    parameter (dist_min=0.5, delev_\overline{min=2.0, dy_mir=1.0, dx_min=1.0!}
    character com_i\overline{d}*1,dom_id_old, elem*5,ma**\overline{3},ma2*2
    open(1i, file='eda5node.dat', statis='old')
    open(12, file='elem_bas_dkm.dat', stãtus='old')
    cpen(21, file='column_eda5.dat')
    read(11,*)
    read(11,*)
    dom_id Old=' '
1000 read(\\,*) dom_id, x1, y1, zl, node1
    write(6,'(al,3(f15.3),ilC)') dom_id, xl, yl, zl, nodel
    if(dom_id.re.dom_idold.and.dom ía.ne.'A') write(2:,'(a3)')'&&&'
    if(dom_id.re.dor__i_old) write(\overline{2}:,'(a3,a1)') 'dom',dom_id
    dom_id_old=dom_i\overline{d}
    rewind(12;
    read(12,*)
    do 20C i=1,r:um_dikm
        read(12,1499) elem,mal,ma2, evol,aht, x2,y2, z2
        if((elem(1:1).eq.'M').or.(abs(z2-z1).gt.delev_m:n)
    +.or.(abs(y2-y1).gt.dy min).or.(abs(x2-xi).gt.d\overline{m}min)) goto 200
1499 FORNAT(A5,10X,A3,A\overline{2},2E10.4,10x,3£10.3)
        dist=sqrt(((x2-xl)**2+(y2-yl)**2+(z2-z1)**2)
        if(dist.le.dist_min) goto 300
    continue
    write(2:,'(a3)') elem(3:5)
    if(node:.ne.rode end) goto 1000
    write(21,'(a3)')
    close(21)
    stop
    end
```


(2) Example Input Files:

eda5node.dat:

| Sio-Region | East (X) | North (V) | Z | node |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1234567890.23456789012345678901234567890123456789012345678901 | | | | |

 wwrom

3	1725:5.516	233768.297	1044.380	26240
3	172516.016	233975.609	1040.530	2626 \%
3	172559.516	233847.734	1039.740	26297
B	172581.500	233887.453	1038.070	26318
B	172603.500	233927.172	1036.890	26390
B	171625.281	234232.656	1029.090	35640
B	171621.953	234331.703	1030.620	3568:
B	171622.578	234377.094	1010.710	35723
B	171622.578	234420.094	10.1.380	35764
B	171615.438	234495.29 ?	10:0.330	35807
B	171571.625	234549.203	$10: 2.830$	35848
C	171648.719	234646.156	1029.970	23.02
c	179766.203	234487.844	1020.050	23736
c	171800.047	234900.047	1033.930	23845
c	171816.156	234363.156	10.9 .990	23958
C	17-860.125	234442.594	1027.520	24065
c	17\%905.844	234670.609	1017.380	24295
c	172947.625	234394.156	1013.100	24427
C	172122.578	234297.266	1006.220	25079
c	:72283.047	234342.313	1040.660	25558
c	:72324.047	234566.047	1033.710	25702
C	$\bigcirc 72450.047$	234260.047	1038.990	260:2
C	:72472.516	234103.484	1042.440	26096
C	172600.047	234500.047	2027.070	28877
C	172602.203	234326.516	1327.870	28898
C	172647.484	234006.609	$=336.020$	29068
c	172650.047	234:50.047	-034.940	29110
C	171559.250	234730.375	-018.230	35891
C	171563.891	234885.28=	$=025.370$	35934
C	171615.734	235027.625	$=020.830$	35978
D	171803.797	235214.594	1012.270	23924
D	171945.297	235450.109	1012.420	24383
D	171990.047	235080.047	1013.330	24535
D	172067.672	234869.906	1006.850	24890
D	172211.891	235111.922	1002.950	25304
D	172253.047	234759.047	1039.870	25436
2	172450.047	235075.047	1040.840	26033
D	172506.203	234781.391	1032.890	262:9
2	1716.5 .938	235237.531	1017.420	36922
\bigcirc	171631.984	235537.094	1018.470	36066
	171700.047	235575.047	1015 8.0	

elem _bas_dkm.dat:

ELEVE	
Ei 1	tswE10.1206E+030.1000E+01
Mi 1	tswM10.1352E+070.0000E + C0
Fj 1	tswF20.1046E+040.1000E+01
Mj 1	tsw $20.8: 11 \pm+070.0000 \mathrm{E}+00$
Fk 1	tswF30.1703E+040.1000E+0:
Mk 1	tswこ30.1622E+080.0300E-00
B-428	botcaio. $2521 E+550.0000 \mathrm{E}+00$
B-451	botbdo. $2548 \mathrm{E}+550.0000 \mathrm{E}+00$
B-469	botbdc. $2789 \mathrm{E}+550.0000 \mathrm{E}+00$
B-498	botbdC. $2809 \mathrm{E}+550.0000 \mathrm{E}+00$
B-515	botbdc. $3767 \mathrm{E}-550.0000 \mathrm{E}+00$
B-527	botodo. $3106 \mathrm{E}-550.0000 \mathrm{E}+00$

```
268400.500 229900.000 1044.6900
-68400.000 229900.090 1044.6900
268400.500 229900.000 1030.5200
=68400.000 229900.000 1030.5200
268400.500 229900.000 994.0800
268400.000 229900.000 994.0800
\begin{tabular}{lll}
\(17208 . .763\) & 232401.650 & 730.4200 \\
\(172: 70.763\) & 232500.650 & 730.4900 \\
172243.900 & 232630.170 & 730.5800 \\
172343.780 & 232847.080 & 730.6900 \\
172405.800 & 233019.850 & 730.6700 \\
172453.630 & 233243.630 & 730.8100
\end{tabular}
```

(2) Example Output File:
column eda5.dat:
domA
310
314
320
344
371
48
410
424
433
435
453
461
476
273
\&\&\&
domb
246
256
262
263
264
269
31
34
37
318
319
321
323
324
326
332
337
350
354
359
361
364
368
369
373
376
385
388
393
395
40
41
49
423
425
427
(2) Example Output File:
column_eda5.dat:
domA
310
314
320
344
371
48
4:0
424
433
435
453
461
476
273
\& \& \&
domB
246
256
262
263
264
269
31
34
37
318
319
321
323
324
326
332
337
350
354
359
361
364
368
369
373
376
385
388
393
395
40
41
49
423
425
427

9. Appendix II: Code Listing of hgram_eda5.f, version 1.0.

```
C
To produce percoiation histograms & average percolcatiors
for given suodomairs of the repository area at the repository
norizor (m & n layers) with prescribed lis=s of co_umns.
Parameters:
    kode his=1, caicliate nistograms;
        =0, no histogram caiculations.
    serr_kg = expected sum-level iclose to 1.0: for flux in kg/s;
    serr_mm = expected sum-level iclose to i.0) for flux in mm/yr.
    eps = tolerance for error between actuai sum and expected sum.
Znput इi-es:
coiumn.dat --- subdcmair. IDs and lists of colurrrs.
conne.dat --- vertical connections with area sizes.
qflux=filerame --- containing percolatior. fiux in the sequerce
                            of the connectiors.
Output Files:
    phkg.out --- percolation historgrams in kg/s.
    avg_prmm.out --- average percolatior &
                perco-ation ristorgrams in mm/yr.
Note: numcon=numflu=1467 for f1 (long-term average cimate:,
        numcon=numflu=1429 for f2 (super pluvia: climate),
        but rumcor=num&:u=1470 is suitabie for all cases.
        Total area = 6725763.0 for eda1.
            =4626160.0 for eda2.
            = 1997074.0 for ead5.
        'gflux' must be compatible with 'conre.dat' in terms of both
        the total number of lines and the sequence.
parameter (kode_his=0,serr_kg=0.000, serr mm=0.9999, eps=0.001)
parameter (numdom=6, numcon=1470, numflu=1\overline{4}70, totarea=1997074.)
Farameter (rmin_kg=0,rmax_kg=0,delt kg=0)
parameter (rmin_mm=0,rmax mr.=2.0, dei=rm=2.0)
character ecol*\overline{3},ELI*2,EL\overline{2}*2,NE:* 3,NE部* 3, com*4
character*40 gflux
data qflux/'mragb_p.rep' /
open!21, fi_e='column_eda5.dat', stazus='old';
cpen(22, file='repof_\overline{kas.con', status='ond';}
open(23, file=qfiux, status='old')
cpen(25, fi-e='domain.tmp')
open(26, file='phkg.out')
cpen(27, fi_e='avg_phmm.out')
sum_ot=0.
areā tcur=c.
write(27,*) 'fiux filename=',qflux
1000 numd=numd+1
area_to:=0.
```

```
    read!2*,*; dom
    write:27,*) '******* domain =コ=',dor.
    revird!25!
    nurucoi=0
2000 rumcoi=ramcoj+2
    rewind(22)
    rewird(23)
    read!22,*)
    readi23,*;
c*** read the column:
    read(21,:00) eco:
100 forma=(A3)
    :E:eco:.eq.'&s&'; go=0 3000
c** fird the corresponding area ard its seguen: ia: r.jmber:
    do \grave{j=1,nureon}
            READ(22,20) E=2,NE1,EL2,NE2,NSEQ,NAD1,NES2, =SO-, =1, =2, AREAX, BETAX
20 FORMAT (A2,A3,A2,A3,4=5,4E:0.4;
            if(NE1.eq.eccl) iter.
                area_col=AREAX
                area_tot=area_zot+AREAX
                    nums_col=;
                goto-120
            erdif
        erdio
~*** Eind the corresponding flux (fracture, or matrix, or totaz):
120 co k=1, numflu
            read(23,*) d=, d2,d3,d4,x=1:dx
            if(k.eq.nums_co:) then
                fkg_col=xE\overline{1}ux
                fmm_col=xflux*3.:536e07/area_col
                90:\overline{0}=40
            endiE
        erdco
c*** write ecol, area_col, fkg_col, and Emm_col to a file:
140 wr=こe(25,200)-eco之, areã_col, fkg_cò, Emr.,co之
cin= write{6,200) eco之, àrea_col, fkg_col, Emm_co:
    Eormat(A3,3e:5.4)
    go:o 2000
C*** find the area-weighted average percoia=ion for the domair
3000 wr:=e(25,*)
    rewird!25)
    rumcoi=rumcol-?
    a:g_per=0.
    co }\overline{\textrm{i}}=1,r.amco
            read!25,200; ecoi, area_co:, fkg_col, Emm_001
            avg_per=avg_per+area__co\overline{i}*emr__col
        endco
        avg_per=avg_per/area_tot
        wrEE(27,*) 'number of blocks in the comaEn=',numco:
        wrize(27,*) 'area-total for the comain (m*m) =', area_tot
        wri=e(27,*; 'area-fractior of tota- repository =',area_fot/totarea
        wr:_e(27,*) 'average fercolation f:ux (mm/yr) =', avg_per
        sum_&ot=sum_to=+area_tot/5c=area
        area tcur=area tcur+area =0:
        wr:EE(27,*) 'total repository area currently counted;', area_tour
        L=(zode his.eq.0) go=0 60c0
c*** check the fkg_col & fmm_col agairst flux group zntervals =0
c*** identify the groups to which Ehey belong, then to add =heir area
c*** contribu=iors to the Eotai area fraction ce the groups:
```

```
        sum areaf ky=0.
        sum_areaz_rm=0.
        m=0
4000
    m=m+?
        dkgi=rmin_kg+(m-:)*delt_kg
        akg2=rmax kg+(m-Z)*delt kg
        amm=rmin_mm+(m-i)* delt mm
        amm.2 = rmax_mm+(m-1)* * delt_mm
        areaf_kg=0.
        areaf mm=0.
        rewind(25)
        do i=1, numco:
            read(25,200) ecol, area_con, fkg_col, frm_co:
            if(fkg col.gt.diggl.and.\overline{fkg coz.-e.akg2) =F.er.}
            areaf_kg=areaf_kg+area_coi/area_=c=
            erdif
            : (fmr. col.gt.dmmi.and.fmm coi.le.dmm2) trer.
            areaf_mm=areaf_mm-area_col/area__o:
            endif
        enddo
        sum areaf kg=sum areaf kg+areaf kg
        sum_areaf mm=sum areafmm+areaf mm
        wri=e(26,300) dxg1,dkg2,areaf_kg
        wriこe(27,300) dmm1,dmm2, areaf_mm
        format:3e12.4)
    if(abs(sum areaf kg-serr kg).gt.eps.or.
                abs(sum_areaf_mm-serr_mm).gt.eps) go=0 4000
    write(26,*) 'sum areaf kg=',sum areaf kg
    write(27,*) 'sum-areaf mm=',sum-areafmm
6000 write(27,*) 'sum of current dom-area fractiors: sum_tot=',sum_to:
    if(rumd.lt.numdom) go:0 1000
stop
erd
```

10. Attachments:

All the related files, including the programs, 'fehm-tough_node5.f" and 'hgram eda5.f". and the final output files for the results, are provided in the data associated with the DTN: MO9904MWDWAP73.001.

Attachment III

Modification of Saturated Zone Breakthrough Curves

Modification of Saturated Zone Breakthrough Curves

For these set of simulations, the transport of radionuclides in the saturated zone (SZ) was modeled following the same approach of TSPA-VA (see Chapter-8 for more details, CRWMS M\&O, 1998g). One dimensional transport using streamtubes was used to calculate concentration of radionuclides 20 km downstream from the repository. Four streamtubes were used corresponding to the four source sub regions at the water table as shown in Figure III-1. Assuming the same flowpaths for the radionuclides exiting at the water table, the breakthrough curves for these streamtubes are similar to the breakthrough curves used for the expected-value TSPA-VA base case, except for the crosssectional area of the streamtubes. Similar to TSPA-VA, the breakthrough curves generated based on a unit release for these streamtubes are used in a convolution integral program to calculate the time varying concentrations based on the mass flux at the water table. This convolution integral program (szconv.dll) is run along with the total system model.

The cross-sectional area for these streamtubes are specified as the ratio between the volumetric groundwater flow rate from each source region at the water table and the specific discharge within the streamtubes. The product of cross-sectional area and the dilution factor is input as the first line in the breakthrough curve files used as input to the convolution integral program. The crosssectional area term in all the breakthrough curve files for the four streamtubes were modified to account for the volumetric groundwater flow rates in the four source subregions as shown in Figure III-1. The volumetric groundwater flow rates for the four regions are shown in Table III-1.

Region	Volumetric groundwater flow rate $(\mathbf{k g} / \mathbf{s})$	Volumetric groundwater flow rate $\left(\mathbf{m}^{3} / \mathbf{y r}\right)$	Cross-sectional area $\left(\mathbf{m}^{2}\right)$
A	0.041	1294.97	2158.29
B	0.225	7108.62	11847.71
C	0.156	4903.88	8173.13
D	0.273	8620.84	14368.06

Table III-1 Volumetric groundwater flow rates for EDA-V
The calculation of volumetric groundwater flow rates is discussed in CRWMS M\&O. 1999h. The volumetric flux in kg / s is converted to $\mathrm{m} 3 / \mathrm{yr}$ by dividing with the specific density of water and converting the time units to years. The cross-sectional area shown in column 4 of the table is calculated by dividing the volumetric groundwater flow rate ($\mathrm{m}^{3} / \mathrm{yr}$) with a specific discharge of 0.6 m / yr (Section 8.3.3. Chapter-8. CRWMS M\&O, 1998g). These cross-sectional areas along with a dilution factor of 10 (CRWMS M\&O 1998g. Table 8-19) are used as input to a software routine ASAP (CRWMS M\&O 1999i) for the modification of the saturated zone breakthrough curves to account for the volumetric groundwater flow rates in the four source subregions for EDA-V.

Figure III-1. Repository regions for EDA-V

