Wakefields in the LCLS Undulator Transitions

PDF Version Also Available for Download.

Description

We have studied longitudinal wakefields of very short bunches in non-cylindrically symmetric (3D) vacuum chamber transitions using analytical models and the computer program ECHO. The wake (for pairs of well-separated, non-smooth transitions) invariably is resistive, with its shape proportional to the bunch distribution. For the example of an elliptical collimator in a round beam pipe we have demonstrated that--as in the cylindrically symmetric (2D) case--the wake can be obtained from the static primary field of the beam alone. We have obtained the wakes of the LCLS rectangular-to-round transitions using indirect (numerical) field integration combined with a primary beam field calculation. ... continued below

Physical Description

13 pages

Creation Information

Bane, Karl L.F.; /SLAC; Zagorodnov, Igor A. & /DESY August 15, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We have studied longitudinal wakefields of very short bunches in non-cylindrically symmetric (3D) vacuum chamber transitions using analytical models and the computer program ECHO. The wake (for pairs of well-separated, non-smooth transitions) invariably is resistive, with its shape proportional to the bunch distribution. For the example of an elliptical collimator in a round beam pipe we have demonstrated that--as in the cylindrically symmetric (2D) case--the wake can be obtained from the static primary field of the beam alone. We have obtained the wakes of the LCLS rectangular-to-round transitions using indirect (numerical) field integration combined with a primary beam field calculation. For the LCLS 1 nC bunch charge configuration we find that the total variation in wake-induced energy change is small (0.03% in the core of the beam, 0.15% in the horns of the distribution) compared to that due to the resistive wall wakes of the undulator beam pipe (0.6%).

Physical Description

13 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SLAC-PUB-11388
  • Grant Number: AC02-76SF00515
  • DOI: 10.2172/878788 | External Link
  • Office of Scientific & Technical Information Report Number: 878788
  • Archival Resource Key: ark:/67531/metadc879213

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 15, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 6:16 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bane, Karl L.F.; /SLAC; Zagorodnov, Igor A. & /DESY. Wakefields in the LCLS Undulator Transitions, report, August 15, 2005; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc879213/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.