Supported Ionic Liquid Membranes for Carbon Dioxide Separation

David Luebke, Jeffery Ilconich, Christina Myers, Henry Pennline

May 9, 2006

5th Conference on Carbon Capture & Sequestration
Precombustion CO$_2$ Capture in IGCC
Potential of Ionic Liquids

- Negligible Vapor Pressure
- Thermally Stable above 200°C
- High CO₂ Solubility Relative to H₂, N₂, and CH₄
Several Fabrication Options

- Porous Substrate
- Dense Substrate
Selection of Support Material Significant

PES Support-Supor®
- Suggested by Noble et al. as a useful support*
- \(T_g \sim 210^\circ C \)
- Visible change when heated to 100\(^\circ C\) in the presence of [hmim][Tf\(_2\)N]
- Membrane failure occurs at less than 50\(^\circ C\)

PSF Support-HT Tuffryn®
- Unmodified \(T_g \sim 150^\circ C \)
- Membrane stable to 125\(^\circ C\)

Constant Pressure Flux Measurements

[Diagram showing a flowchart of a system with labeled components: Feed, Furnace, Carrier Gas, GC, and Sweep and Carrier Gas (argon).]
Support Failure Limits Performance

Permeability (Bar) vs. Temperature (°C)

- CO₂: $Y = 6206e^{-0.6435x}$, $R^2 = 0.9569$
- He: $Y = 72571e^{-2.0902x}$, $R^2 = 0.9994$

Selectivity vs. $1000/T (K^{-1})$

- $Y = 0.1154e^{1.3483x}$, $R^2 = 0.9954$
Other Mechanisms Inconsistent

Original Mechanism

New Mechanism
DSC Confirms Large T_g Reduction for PES

Heat Flow (W/g) vs. Temperature (°C)

- **PES without Ionic Liquid**
- **PES with Ionic Liquid**

DSC confirms large T_g reduction for PES.
PSF Less Affected

Heat Flow W/g

Temperature °C

PSF without Ionic Liquid

PSF with Ionic Liquid
Permeabilities Similar to Literature

Diffusivities Comparable to Literature

Separation from H$_2$ Favorable

![Graph showing permeability of CO$_2$, H$_2$, and He at different temperatures.](image)
Temperature Dependence Similarity

Selectivity vs. \(\frac{1000}{T} \) (K\(^{-1}\))

- **CO\(_2\)/He**
- **CO\(_2\)/H\(_2\)**

Key temperatures:
- 100°C
- 75°C
- 50°C
- 35°C
H$_2$O in Feed and Non-Ideality Insignificant

<table>
<thead>
<tr>
<th></th>
<th>Pure Gas</th>
<th>Dry Gas Mixture</th>
<th>Wet Gas Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>37</td>
<td>100</td>
<td>37</td>
</tr>
<tr>
<td>CO$_2$ Permeability (Barrer)</td>
<td>817</td>
<td>1170</td>
<td>840</td>
</tr>
<tr>
<td>H$_2$ Permeability (Barrer)</td>
<td>136</td>
<td>359</td>
<td>121</td>
</tr>
<tr>
<td>Selectivity (CO$_2$/H$_2$)</td>
<td>6.4</td>
<td>3.3</td>
<td>7.0</td>
</tr>
</tbody>
</table>
SILM’s versus Polymers

Polymer Literature Data

CO₂/H₂ Selectivity vs. Permeability (Barrer)
Summary

- Support selection in SILM is nontrivial.
- Support performance is predictable by DSC analysis.
- Current performance limited by support failure and IL blowout.
- Ideal and non-ideal selectivities similar.
- Performance not significantly impacted by a small amount of water in the feed.
- Unoptimized SILM’s are competitive with the best polymer membranes.
Acknowledgements

The authors gratefully acknowledge the Brennecke and Maginn research groups at the University of Notre Dame. Their efforts in the synthesis and characterization of the ionic liquids along with their invaluable expertise in these areas have been very beneficial in the development of this exciting new technology. We look forward to continued fruitful collaboration.