Ammonia at Blodgett Forest, Sierra Nevada, USA

Marc L. Fischer and David Littlejohn

Environmental Energy Technologies Division, E.O. Lawrence Berkeley National Laboratory,
1 Cyclotron Rd., Berkeley CA, 94720, USA

Corresponding author address:

Marc L. Fischer, Staff Scientist
Atmospheric Sciences Department
Mail Stop 90K-125
E.O. Lawrence Berkeley National Laboratory
1 Cyclotron Rd.
Berkeley, CA 94720-8108

Phone: 510-486-5539
email: mlfischer@lbl.gov
Abstract

Ammonia is a reactive trace gas that is emitted in large quantities by animal agriculture and other sources in California, which subsequently forms aerosol particulate matter, potentially affecting visibility, climate, and human health. We performed initial measurements of NH$_3$ at the Blodgett Forest Research Station (BFRS) during a two week study in June, 2006. The site is used for ongoing air quality research and is a relatively low-background site in the foothills of the Sierra Nevada. Measured NH$_3$ mixing ratios were quite low (< 1 to ~ 2 ppb), contrasting with typical conditions in many parts of the Central Valley. Eddy covariance measurements showed NH$_3$ fluxes that scaled with measured NH$_3$ mixing ratio and calculated aerodynamic deposition velocity, suggesting dry deposition is a significant loss mechanism for atmospheric NH$_3$ at BFRS. A simple model of NH$_3$ transport to the site supports the hypothesis that NH$_3$ is transported from the Valley to BFRS, but deposits on vegetation during the summer. Further work is necessary to determine whether the results obtained in this study can be generalized to other seasons.
1. Introduction

In California and the nation, many areas are out of compliance with federal particulate matter standards designed to protect human health (NRC 1998; NRC 2000). Nationally, Congress has set a goal to remediate current and prevent future impairment of visibility in over 150 federally designated Class 1 Federal (Malm et al. 2000) designated sites. Ammonia (NH\textsubscript{3}) is the primary gas to form aerosols in combination with acidic species (e.g., SO\textsubscript{X}, NO\textsubscript{X}) that are produced in combustion processes from energy related activities. While mixing ratios of combustion derived species are regulated, NH\textsubscript{3} is not. If ammonia limits aerosol concentrations, then controls on emissions of NO\textsubscript{X} and perhaps SO\textsubscript{X} may not be effective in controlling aerosol concentrations, visibility, or protecting human health.

The magnitude of NH\textsubscript{3} fluxes are expected to vary enormously over space. NH\textsubscript{3} is emitted from strong point sources (e.g. animal agriculture), medium strength distributed sources (e.g., fertilized fields and automobile catalytic converters), and exchanged with spatially vast areas of soil and vegetation (Potter et al. 2001; Kirchstetter et al. 2002; Battye et al. 2003). Ammonia is of particular interest in California because it is emitted in large amounts from agricultural sources in the Central Valley, leading to high (20-40 ppb) surface layer NH\textsubscript{3} mixing ratios (Fischer et al. 2003; Lunden et al. 2003; Chow et al. 2006). For example, recent work suggest that San Joaquin Valley area emissions might range from 8 to 42 g N ha-1 day-1 (11 to 50 ng NH\textsubscript{3} m-2 s-1) in winter and summer respectively, with approximately 78 % of the summertime emissions derived from animal agriculture (Battye et al. 2003).

While most NH\textsubscript{3} measurements have been made in urban areas in California, some measurements have been made in rural settings. Airborne measurements in the afternoon mixed layer showed that ammonium compounds (i.e., NH\textsubscript{3} + NH\textsubscript{4}+) were the dominant component of the N budget with variable NH\textsubscript{3} concentrations corresponding to mixing ratios of 10 ± 7 and 2.5 ± 0.5 ppb in boundary layer above the foothills of the Sierra in the boundary layer above Lake Tahoe respectively (Zhang et al. 2002). In contrast, a ground-based study at Lake Tahoe measured significantly lower concentrations corresponding to approximate mixing ratios...
between 0.6 to 1.5 ppb and mean summer deposition rates between 3 to 11 ng N m\(^{-2}\) s\(^{-1}\) (Tarnay et al. 2001). The previous work raises the question of whether there are vertical gradients in NH\(_3\) caused by dry deposition or whether the differences in NH\(_3\) at the surface and aloft are due to different measurement times.

Here we describe a short term study of the NH\(_3\) mixing ratios and NH\(_3\) fluxes at a rural site in the foothills of the Sierra Nevada.

2. Methods

The methods section includes a description of the measurement site, the fast response NH\(_3\) instrument, the methods used for data reduction, a filter sampling system used to provide comparative NH\(_3\) measurements, a method used to calculate the aerodynamic deposition velocity expected under different meteorological conditions, and a predictive model for NH\(_3\) mixing ratios at the measurement site.

2.1 Measurement Site

UC Berkeley Blodgett Forest Research Station

We measured NH\(_3\) mixing ratios and fluxes near the University of California’s Sierra Nevada the Blodgett Forest Research Station (BFRS), located west of the Sacramento region as shown in Figure 1. The BFRS site is an attractive site for this work because it is representative of large areas of forested land with acidic soils in the mountainous Western US and has been the site of ongoing air quality measurements (Goldstein et al. 2000; Dillon et al. 2002; Kurpius et al. 2002; Farmer et al. 2006). Although recent work at BFRS has studied mixing ratios and fluxes of several reactive nitrogen species, NH\(_3\) has not been measured previously.

The BFRS tower is located at 38.88°N, 120.62°W, at an elevation of 1315 m in a regrowing ponderosa pine plantation. Tree heights ranged from approximately 8-10 m. Terrain is gently sloping downward from east to west. Power to the site is provided by a diesel generator located approximately 130 m due north of the tower site. The predominant winds are upslope from the southwest during the day and downslope from the northeast during the night.

2.2 NH\(_3\) Instrument
Ammonia was measured using a sensitive fast-response quantum-cascade laser (QCL) spectrometer operating at a frequency of 965 cm\(^{-1}\) (Aerodyne Research Inc (ARI), similar to that used for eddy covariance flux measurements of NO\(_2\) (Zahniser 2003; Horii et al. 2004). The precision of the NH\(_3\) instrument is normally 0.3 ppb (1 sigma) for data collected at a frequency of 10 Hz. The instrument provided highly automated control of high frequency data collection, zero adjustments, and zero and span checks as described below using a dedicated software package (TDLWintel).

In addition to the QCL spectrometer, additional data was collected. First, a sonic anemometer (Gill Windmaster Pro) was used to measure fluctuations in virtual air temperature and 3-D winds. The digital output from the anemometer was logged by the computer controlling the QCL spectrometer. The anemometer was physically positioned so that the sensing volume was located 30 cm from the inlet manifold of the NH\(_3\) instrument. Second, a data logger (Campbell CR23X) recorded gas flow rates controlled by mass flow controllers, inlet surface temperatures measured with thermocouples, atmospheric temperature and relative humidity (Vaisala Y45), and short wave solar radiation (Kipp and Zonen CM3).

The NH\(_3\) and ancillary meteorological measurements were made at a height of approximately 10 m above the ground, sufficient to reach slightly above the nearby vegetation. The combined weight of the spectrometer, support electronics and thermal control system and liquid nitrogen storage dewar for automated refills of the spectrometer detector dewar (total of ~ 200kg) required a platform scissor-lift. The scissor lift was located at a distance of approximately 8 m from the main BFRS meteorological tower. During the two day period from July 24 to 25, when the LBNL measurements were compared with the filter sampler, the platform was lowered to a height of ~ 6 m to match the height of the filter sampler. The filter sampler was deployed on the main BFRS tower.

To achieve high temporal resolution necessary for eddy covariance measurements, we designed a high flow rate gas sampling and calibration subsystem that transmits ambient NH\(_3\) vapor to the spectrometer with minimal residence time. A schematic of the inlet and calibration system is
shown in Fig. 2. A flow of ambient air is drawn into the sample manifold by the combination of a manifold flow pump (at 20 slpm) and into the NH$_3$ spectrometer at a rate (approximately 25 slpm) determined by the pump speed (Varian 600 dry scroll) and the diameter of a critical orifice inlet. After entering the critical orifice (which reduces the pressure to approximately 50 Torr), air is passed through a 0.2 micron PTFE air filter (Gelman PALL, Acro-50), a 2 m long 1 cm diameter PFA Teflon tube to the multipass optical cell contained within the QCL spectrometer. All glass surfaces are siloxyl coated (General Electric) and surfaces are heated as suggested in Neuman et al (1999). In our application, the temperatures of the different inlet parts were maintained between 40 and 45°C by a set of four temperature control circuits, while the optical bench including the optical absorption cell was maintained at 30°C.

During the measurements, the instrument zero was adjusted every 30 minutes, under control of the spectrometer computer, by overfilling the inlet manifold with an approximately 60 slpm flow of dry nitrogen supplied by a large liquid N$_2$ supply dewar. Typically, zero adjustments were significantly less than 1 ppb. In addition, the instrument zero and span were checked periodically. Zeros were generally checked every 30 minutes. The span of the instrument was checked by reversing a backflow of 300 scm that normally removes a 100 scm flow of NH$_3$ supplied from a permeation tube source. After applying NH$_3$ for 30 s, the backflow is reestablished removing NH$_3$ from the inlet. The response time of the instrument to an approximately 15 ppb step in NH$_3$ mixing ratio was checked once each hour by applying a NH$_3$ from a permeation tube source to the N$_2$ flow. As shown in Figure 3, the response is well characterized by the sum of exponential decay terms as

$$NH_3(t) = No \left(a_1 \exp(-t/\tau_1) + a_2 \exp(-t/\tau_2) \right),$$

where $a1 = 0.8 +/- 0.05$, $\tau_1 = 0.35 +/- 0.05$ s, $a_2 = (1-a_1)$, and $\tau_2 = 4 +/- 1$ s. The uncertainties in the values reported for the decay coefficients time constants represent variations in the best fit values obtained from fits taken over the experimental period.

2.3 Data Reduction

The 10Hz data NH$_3$ were processed to estimate mean NH$_3$ mixing ratios and NH$_3$ fluxes. For mean NH$_3$, a continuous estimate of instrument zero was estimated as a spline interpolation of
NH₃ values obtained during the stable period at the end of zero checks (see Figure 3). The instrument zero was less than 1 ppb for 90% of the data, until June 21st, when the instrument ran out of cryogens. Upon restarting the instrument on June 23rd, the instrument noise level had increased by nearly an order of magnitude (to ~ 3 ppb in 1 second integration), leading to a larger variation in zero level. Following subtraction of instrument zeros, mean mixing ratios were calculated for 1 and 12 hour bins.

NH₃ flux was computed for ½ hour intervals from the covariance of the 10 Hz NH₃ mixing ratios and the vertical wind using standard techniques (Baldocchi et al. 1988). Wind fields were rotated to a coordinate system with zero mean vertical wind. Fluctuations in ammonia, NH₃’, virtual temperature, T’, and wind vectors, u’, v’, and w’, were calculated by subtracting 1/2 hour block averages. Vertical fluxes were calculated as the covariance between vertical wind fluctuations, w’, and other quantities. Periods during NH₃ zero or span measurements were excluded. The mean ammonia flux, \(F_{NH3} = \langle w'NH3' \rangle \) was estimated for each ½ hour interval. The time lag between w’ and NH₃’, required to maximize \(F_{NH3} \), was determined from lag correlation plots. Typical values for the best lag were small (< 0.3 s), and roughly consistent with that expected from the measured step response of the inlet system.

To correct for loss of high frequency NH₃ fluctuations due to finite frequency response of the gas inlet, we applied an empirically derived multiplicative correction (Horii et al. 2004). The correction was computed from the measurements of sensible heat obtained from the sonic anemometer. Here sensible heat is calculated as, \(H = \rho C_p <w'T'> \), where \(\rho \) and \(C_p \) are the density and specific heat of air respectively. We calculated the correction factor,

\[
f_{corr} = \frac{w'T'}{w'T_{sm}'}\tag{2}
\]

where \(T_{sm}' \) is obtained by convolving \(T' \) with the double exponential decay function describing the step response to NH₃ span decay in Eq (1). Typical values for \(F_{corr} \) ranged from 1 to 1.2 depending on the atmospheric stability, indicating that the NH₃ captured most of the high frequency fluctuations contributing to the flux. As an additional check of the frequency response, power spectra for \(w'T' \), \(w'T_{sm}' \), and \(w'NH3' \) were computed for ½ hour periods and compared with the -4/3 power law expected from Komolgorov similarity theory.
We determined whether the NH$_3$ fluxes were stationary by comparing the ½ hour mean flux with the mean of the individual fluxes determined from 5 minute sub-intervals. Data was considered to be stationary when the flux calculated from the subintervals is within 30% of the ½ hour mean flux (Foken et al. 1996). Non-stationary conditions typically occur during periods of intermittent turbulence which typically occurs on nights when the air is stably stratified and friction velocity, $u^* = \langle -w'u' \rangle^{1/2}$ is low ($u^* < 0.1 \text{ m s}^{-1}$). Non-stationary fluxes of nitrogen oxides have also been observed at BFRS, associated with emissions from the generator (Farmer et al. 2006). We excluded the data (~20%) obtained when the wind direction was within 45 degrees of north.

2.4 Filter Sampling

Ambient NH$_3$ concentrations were determined during a two day period (starting on the evening of June 23rd and continuing into midday of June 25th) using filter samples collected with the Desert Research Institutes (DRI) sampler (Chow et al. 1993). As described above, the inlet of the filter sampler was located at a height of 5.5 m off the ground on the main meteorological tower. In this method, two filter samples are collected simultaneously. One filter is exposed to a flow of ambient air, while the other is exposed to air that has had gaseous NH$_3$ removed by an annular denuder. Then the denuded filters collected only particulate NH$_4^+$, while the undenuded filter collected both gas and aerosol. Gaseous NH$_3$ is estimated as the difference between undenuded and denuded measurements. In this experiment, four sets of paired (denuded and undenuded) citric acid coated filters were exposed to air flows near 100 liters per minute (measured before and after each sample was collected) over the two day period using 12 hour collection times (1800-0600 and 0600-1800 PDT, or 0100-1300 and 1300-0100 GMT). Before and after sample collection the filters were stored in capped, bagged, and stored in an ice chest. Following collection on June, 25th, the samples were returned to DRI for analysis of NH$_4^+$ ions captured on the citric acid.

2.5 Estimate of Maximum Deposition Velocity

As a check on the observed NH$_3$ fluxes, we computed deposition velocities, $V_d = F_{NH3}/NH_3$, for each ½ hour interval and compared it to a simple model for the maximum deposition velocity expected if all NH$_3$ molecules are reaching the leaf surfaces are adsorbed. In general, deposition velocity can be expressed in a resistance based model as,
\[V_d = (R_a + R_b + R_c)^{-1}, \] (3)

where \(R_a, R_b, \) and \(R_c \), are the aerodynamic, leaf boundary layer, and stomatal resistances respectively. In the limit that the vegetation is nitrogen limited and readily accepts all NH\(_3\) reaching the leaf surface, \(R_c \) can be assumed to be small and a maximum deposition velocity can be written as

\[V_{d_{\text{max}}} = (R_a + R_b)^{-1}, \] (4)

Using standard turbulence models for the surface layer fluxes, one can write a set of expressions for \(R_a \) and \(R_b \) (Wesely 1989; Horii et al. 2004). Here

\[R_a = \frac{u}{u^*} - \frac{\chi_H}{(ku^*)}, \] (5)

where \(k \) is the Von Karmen coefficient (~ 0.4). Under stable conditions \(\chi_H \) can be expressed as

\[\chi_H = \frac{5(z-d)}{L}, \] (6)

where \(z \) is the measurement height, \(d \) is the displacement height (often assumed to be 0.75 vegetation height), and \(L \) is the Monin–Obukhov length scale, \(L = -kg\langle w'T' \rangle/Tu^*^3 \), and \(g \) is the acceleration due to Earth’s gravity. Stable conditions are defined as when \(L > 0 \). Under unstable conditions (\(L < 0 \)),

\[\chi_H = \exp(0.598 + 0.39 \ln(-z-d)/L - 0.09 \ln^2(-z-d)/L). \] (7)

Finally, the boundary layer resistance at the leaf surface can be written as

\[R_b^{-1} \sim \frac{u^*}{7.1} \] (8)

Under the conditions observed at a mixed deciduous forest in Northeastern United States, Horri et al. (2004) observed \(0.01 < V_d < 0.08 \) m s\(^{-1}\).

2.6 Simulation of NH\(_3\) Mixing Ratios

Measured NH\(_3\) mixing ratios were compared with simulated NH\(_3\) concentrations derived from and a regional emission inventory estimate of NH\(_3\) emissions combined with a particle back trajectory calculation of time and space specific surface influence on atmospheric gas concentrations and dry deposition of NH\(_3\).

A simple NH\(_3\) emission model was used for these simulations. NH\(_3\) emissions for June were estimated assuming that cows in dairies and feedlots generated a large fraction of the emissions in the Central Valley. The spatial distribution of cows was obtained from county level statistics for 2002 animal stocking density reported by the United States Department of Agriculture’s
National Agricultural Statistics Service (NASS, 2004). We estimated the NH$_3$ emission factors for the summer conditions by scaling the annual averaged emissions factors by the ratio (2.3) of summer time animal fluxes to annually averaged animal fluxes in the San Joaquin Valley (Battye et al., 2003). The resulting emissions factors are 185 and 64 g NH$_3$ animal$^{-1}$ day$^{-1}$ for dairy and non-dairy cattle respectively. County level NH$_3$ fluxes were calculated as the total NH$_3$ emissions for each county normalized by the area and are shown in Table 1. Fluxes from Nevada were set equal to the 2 ng m$^{-2}$ s$^{-1}$, similar to low emission counties in California. We did not attempt to include other sources of NH$_3$ emission (e.g., other animal agriculture or automobiles) and hence this estimate likely represents a lower limit to NH$_3$ fluxes. However, we consider this simple model roughly sufficient for determining the temporal variations in NH$_3$ expected at BFRS, particularly given the additional approximations we make in estimating the transport of NH$_3$ from remote locations to the site.

The surface influence functions were calculated using the stochastic time inverted Lagrangian transport (STILT) model (Lin et al. 2003). STILT was originally derived from the NOAA HYSPLIT particle transport model (Draxler et al. 1998) for inverse model estimates of surface CO$_2$ fluxes (Lin et al. 2004). In our simulations, ensembles of 100 particles were released from the tower site every 2 hours and run backward in time for a period of 12 hours, which generally allowed the particles to reach locations in the central valley. STILT was driven with NOAA reanalysis meteorology (EDAS40) with 40 km spatial resolution and hourly temporal resolution. Land surface contributions to atmospheric NH$_3$ were assumed to be proportional to the time a particle spends within the surface boundary layer. NH$_3$ deposition was assumed to depend on the rate of vertical mixing in the atmosphere and parameterized as a residence time $\tau = z / V_{d0}$, where z is the particle altitude above ground and $V_{d0} = 0.02$ m s$^{-1}$ is an assumed mean deposition velocity. For each time step, Δt, NH$_3$ is updated as

$$\text{NH}_3(t + \Delta t) = \text{NH}_3(t) e^{-\Delta t/\tau} + F_{\text{NH}_3}\Delta t / z_i \nu,$$

where F_{NH_3} (nmol m$^{-2}$ s$^{-1}$) is the surface NH$_3$ flux at the position of the particle, z_i is the height of the boundary layer, and ν is the molecular density of air. Simulations were run both with and without the deposition loss term to estimate the concentration expected for a non-reacting gas.

3. Results and Discussion
3.1 Surface NH₃ Mixing ratios

Figure 4 shows the hourly averages of measured NH₃ from the LBNL laser spectrometer and the mean results from the 12 hour samples collected by the DRI filter system. Both LBNL and DRI data show that NH₃ was generally between 0 and 2 ppb, with a few periods of higher mixing ratios. Near June 13th, a synoptic event introduced cooler air from the north with lower temperatures and mild precipitation, reducing NH₃ concentrations significantly. The averages of the LBNL measurements were lower than the filter samples on June 24th, and similar to or higher than the filter samples on June, 25th (see Table 2). Inspection of the LBNL data suggests that a significant fraction of the data was noisy and did not pass quality control criteria (~ 50% in some of the 12 hour periods), perhaps causing the poor correlation between LBNL averages and the DRI filter measurements.

We also examined the diurnal variations in NH₃. As shown in Figure 5, there was a significant diurnal cycle with lower mixing ratios at night and higher mixing ratios during the day. This is consistent with having predominantly downslope winds carrying NH₃ free air from the Sierra Nevada during the night and upslope winds carrying air with NH₃ from the Central Valley during the day (Dillon et al. 2002).

3.2 Calculated Aerosol – Gas Equilibrium

We considered whether the low NH₃ mixing ratios might limit ammonium-based aerosol concentrations by comparing measured NH₃ with previously measured HNO₃ and the aerosol-gas equilibrium coefficient, Kp, which defines the minimum NH₃*HNO₃ product required to form NH₄NO₃ aerosol (Stelson et al. 1982). Figure 6 shows that Kp >> 1 ppb² for most of the observation period. Earlier work at Blodgett showed that HNO₃ mixing ratios fell in a range of 0.3 to 1.5 ppb (5%-95%) for June-October (Murphy et al., 2006). Assuming a nominal value of 1 ppb HNO₃, the minimum NH₃ mixing ratio required to support aerosol NH₃*HNO₃ in equilibrium with gas phase constituents is numerically equal to the value of Kp. Since the measured NH₃ mixing ratio is generally significantly less than Kp, this suggests that aerosol NH₃*HNO₃ will not be present in equilibrium with gases. We also note that although Kp was
low during points earlier in June, there were also light rains, which would likely strip NH₃, HNO₃, and aerosols from ambient air.

3.3 NH₃ Fluctuations, Fluxes, and Deposition Velocities

Before computing NH₃ fluxes, we examined the power spectra for temporal variations in w’T’, w’T’\text{sm}, and w’NH₃ for each ½ hour period over which NH₃ fluxes were calculated. By comparing the spectra of w’T’ and w’T’\text{sm}, we can visually inspect the loss of high frequency power in w’T’ introduced by smoothing T’ with the finite frequency response of the NH₃ inlet system. A representative set of power spectra are shown in Figure 7. As expected, the spectra for w’T’ and w’T’\text{sm} are similar, consistent with the smoothing reducing w’T’ by a small amount, and suggesting that NH₃ fluxes can be accurately recovered. We also note parenthetically that the high frequency slope of all three of the spectra was not as steep as that expected for turbulence in a Komolgorov similarity theory, as observed by other researchers at this and other sites (Farmer et al. 2006).

The NH₃ fluxes calculated from the 10Hz data are shown in Figure 8. Most of the NH₃ fluxes were small (~ 10 ng NH₃ m⁻² s⁻¹) or negative. During a several day period early in the campaign when NH₃ mixing ratios were highest, large negative fluxes (- 30 ng NH₃ m⁻² s⁻¹) were observed, indicating that NH₃ was being lost to the canopy by dry deposition. The mean flux during the measurement period was 9.2 ± 1.1 ng NH₃ m⁻² s⁻¹. As a check of whether the estimated fluxes were realistic, we calculated deposition velocities for a subset of the measured fluxes. The subset was obtained by requiring that the NH₃ mixing was known to better than 50% (at 68% confidence). As shown in Figure 9, the measured deposition velocities are all less than the maximum deposition velocity estimated from the measured turbulence conditions using Eq (8), with a typical ratio for the measured to maximum deposition velocity of approximately 0.5. This is consistent with some combination of imperfect sticking to leaf surfaces and stomatal resistance to NH₃ uptake by the leaves.

3.4 Transport Model Estimates of NH₃ Concentrations

The map of the estimated surface NH₃ fluxes from cattle is shown in Figure 10. Surface fluxes range over several orders of magnitude, reflecting the strong emissions from the Central Valley and low emissions from the mountainous regions of the Sierra Nevada. Figure 10 includes an
example ensemble of 12-hour particle back-trajectories representing a measurement at BFRS at 1300 hours local time on June 12th, 2006. This example shows that some particle tracks sweep backward into the Central Valley where they come into contact with high surface NH\textsubscript{3} fluxes.

The predicted NH\textsubscript{3} concentrations from the back trajectory simulations are compared with measured NH\textsubscript{3} in Figure 11. Measured NH\textsubscript{3} is generally a factor of ~ 2 higher than NH\textsubscript{3} predicted with deposition and a factor of ~ 2 less than NH\textsubscript{3} predicted without deposition. The temporal variations in predicted and measured NH\textsubscript{3} mixing ratios match reasonably well. This is likely because the large variations are caused by variations in the amount of air reaching BFRS from areas in the Central Valley where NH\textsubscript{3} fluxes are highest.

4. Conclusions
We performed an exploratory study of NH\textsubscript{3} mixing ratios and fluxes at Blodgett Forest during June, 2006. The 1 hour averaged NH\textsubscript{3} mixing ratios ranged from non-detection (< 0.2 ppb) to about 2 ppb, typical of a low-background site removed from significant sources. The diurnal variations were consistent with upslope flows bringing air with higher NH\textsubscript{3} to the site during the day. The observed NH\textsubscript{3} mixing ratios were not sufficient to support NH\textsubscript{4}NO\textsubscript{3} aerosol in equilibrium with gas phase NH\textsubscript{3} assuming HNO\textsubscript{3} was similar to that observed at the site previously. NH\textsubscript{3} fluxes, measured using the eddy covariance method, were generally small or negative, consistent dry deposition to the vegetation and no significant net emission. Calculated deposition velocities were generally about half of the maximum expected for deposition to a canopy with aerodynamic and leaf boundary layer resistance but no resistance to leaf uptake (perfect sticking to leaves). This is not surprising given the nitrogen poor soils in the Sierra foothills. Last, we predicted NH\textsubscript{3} at BFRS by combining a simple NH\textsubscript{3} emission inventory that considered only emissions from cows (dairy and meat) with a particle back-trajectory model. Measured and predicted NH\textsubscript{3} concentrations showed substantially similar temporal patterns over synoptic time periods. Predictions with and without NH\textsubscript{3} deposition bracketed the measured NH\textsubscript{3} mixing ratios. On the basis of these measurements, we conclude that NH\textsubscript{3} from the Central Valley had a small but measurable effect on NH\textsubscript{3} mixing ratios at the BFRS site during the short period of this study, but further measurements would be necessary to determine the whether the same patterns prevail over longer periods, particularly between different seasons.
Acknowledgements

We acknowledge Benet Duncan, Dennis Dibartolomeo, and Joshua Hatch for assistance in construction of the instrument packaging and thermal control systems, Mark Zahniser and David Nelson for technical advice on the use of the NH$_3$ spectrometer. Allen Goldstein generously shared the research infrastructure at BFRS, while David and Sheryl Rambeau provided invaluable assistance with arrangements for field work at BFRS. Steven Kohl of the Desert Research Institute prepared the filter sampler and performed the analysis of the integrated NH$_3$ mixing ratios. John Lin generously provided the STILT model for the atmospheric transport simulations. The NOAA Air Resources Laboratory (ARL) provided the assimilated meteorology used to drive STILT. Nancy Brown, Ron Cohen, Delphine Farmer, Martin Gallagher, Ash Lashgari, Melissa Lunden and Tom Ryerson provided valuable advice and discussion. This work was supported by the California Air Resources Board and by the Laboratory Directors Research and Development Program at the Lawrence Berkeley National Laboratory.
6. References

7. Tables

Table 1. Cattle stocking, area, and estimated NH$_3$ flux by county.

<table>
<thead>
<tr>
<th>County</th>
<th>Beef Cows</th>
<th>Dairy Cows</th>
<th>Other Cattle</th>
<th>area (km2)</th>
<th>Flux (ng NH$_3$ m$^{-2}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alameda</td>
<td>9401</td>
<td>6</td>
<td>10405</td>
<td>1888</td>
<td>8</td>
</tr>
<tr>
<td>Alpine</td>
<td>1560</td>
<td>0</td>
<td>551</td>
<td>1891</td>
<td>1</td>
</tr>
<tr>
<td>Amador</td>
<td>10112</td>
<td>20</td>
<td>9104</td>
<td>1518</td>
<td>9</td>
</tr>
<tr>
<td>Butte</td>
<td>8979</td>
<td>1261</td>
<td>9191</td>
<td>4197</td>
<td>4</td>
</tr>
<tr>
<td>Calaveras</td>
<td>14390</td>
<td>222</td>
<td>12878</td>
<td>2611</td>
<td>8</td>
</tr>
<tr>
<td>Colusa</td>
<td>0</td>
<td>0</td>
<td>7957</td>
<td>2946</td>
<td>2</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>0</td>
<td>0</td>
<td>11596</td>
<td>1843</td>
<td>5</td>
</tr>
<tr>
<td>Del Norte</td>
<td>1018</td>
<td>4703</td>
<td>4154</td>
<td>2580</td>
<td>5</td>
</tr>
<tr>
<td>El Dorado</td>
<td>4115</td>
<td>9</td>
<td>3551</td>
<td>4380</td>
<td>1</td>
</tr>
<tr>
<td>Fresno</td>
<td>23422</td>
<td>90550</td>
<td>282547</td>
<td>15265</td>
<td>28</td>
</tr>
<tr>
<td>Glenn</td>
<td>17438</td>
<td>17304</td>
<td>30655</td>
<td>3366</td>
<td>22</td>
</tr>
<tr>
<td>Humboldt</td>
<td>22333</td>
<td>16732</td>
<td>24041</td>
<td>9146</td>
<td>8</td>
</tr>
<tr>
<td>Imperial</td>
<td>0</td>
<td>0</td>
<td>386634</td>
<td>10687</td>
<td>27</td>
</tr>
<tr>
<td>Inyo</td>
<td>0</td>
<td>0</td>
<td>8278</td>
<td>26120</td>
<td>0</td>
</tr>
<tr>
<td>Kern</td>
<td>36779</td>
<td>74708</td>
<td>148553</td>
<td>20841</td>
<td>14</td>
</tr>
<tr>
<td>Kings</td>
<td>5130</td>
<td>138292</td>
<td>126108</td>
<td>3561</td>
<td>111</td>
</tr>
<tr>
<td>Lake</td>
<td>4764</td>
<td>4</td>
<td>4378</td>
<td>3220</td>
<td>2</td>
</tr>
<tr>
<td>Lassen</td>
<td>25381</td>
<td>38</td>
<td>23905</td>
<td>11667</td>
<td>3</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>0</td>
<td>0</td>
<td>2092</td>
<td>10396</td>
<td>0</td>
</tr>
<tr>
<td>Madera</td>
<td>15723</td>
<td>48086</td>
<td>82972</td>
<td>5468</td>
<td>32</td>
</tr>
<tr>
<td>Marin</td>
<td>9105</td>
<td>10309</td>
<td>15998</td>
<td>1331</td>
<td>31</td>
</tr>
<tr>
<td>Mariposa</td>
<td>10204</td>
<td>245</td>
<td>12130</td>
<td>3715</td>
<td>5</td>
</tr>
<tr>
<td>Mendocino</td>
<td>0</td>
<td>0</td>
<td>7691</td>
<td>8983</td>
<td>1</td>
</tr>
<tr>
<td>Merced</td>
<td>29534</td>
<td>223303</td>
<td>212270</td>
<td>4937</td>
<td>133</td>
</tr>
<tr>
<td>Modoc</td>
<td>41564</td>
<td>14</td>
<td>33615</td>
<td>10097</td>
<td>6</td>
</tr>
<tr>
<td>Mono</td>
<td>2989</td>
<td>0</td>
<td>2938</td>
<td>7794</td>
<td>1</td>
</tr>
<tr>
<td>Monterey</td>
<td>25430</td>
<td>1606</td>
<td>46025</td>
<td>8504</td>
<td>7</td>
</tr>
<tr>
<td>Napa</td>
<td>4300</td>
<td>245</td>
<td>3453</td>
<td>1930</td>
<td>3</td>
</tr>
<tr>
<td>Nevada</td>
<td>3007</td>
<td>108</td>
<td>1927</td>
<td>2451</td>
<td>2</td>
</tr>
<tr>
<td>Orange</td>
<td>392</td>
<td>0</td>
<td>401</td>
<td>2021</td>
<td>0</td>
</tr>
<tr>
<td>Placer</td>
<td>0</td>
<td>0</td>
<td>10004</td>
<td>3595</td>
<td>2</td>
</tr>
<tr>
<td>Plumas</td>
<td>5766</td>
<td>7</td>
<td>10644</td>
<td>6537</td>
<td>2</td>
</tr>
<tr>
<td>Riverside</td>
<td>3670</td>
<td>90359</td>
<td>87042</td>
<td>18451</td>
<td>14</td>
</tr>
<tr>
<td>Sacramento</td>
<td>16392</td>
<td>18337</td>
<td>32807</td>
<td>2472</td>
<td>31</td>
</tr>
<tr>
<td>San Benito</td>
<td>14408</td>
<td>935</td>
<td>24054</td>
<td>3556</td>
<td>9</td>
</tr>
<tr>
<td>San Bernardino</td>
<td>2918</td>
<td>158240</td>
<td>110185</td>
<td>51334</td>
<td>8</td>
</tr>
<tr>
<td>San Diego</td>
<td>6363</td>
<td>5729</td>
<td>13709</td>
<td>10752</td>
<td>3</td>
</tr>
<tr>
<td>San Francisco</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>120</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 2. Comparison of NH$_3$ mixing ratios (ppb) from DRI filter samples and averages

<table>
<thead>
<tr>
<th>Date</th>
<th>Time (GMT)</th>
<th>Filter</th>
<th>LBNL</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/06/2006 7:00</td>
<td>1.46</td>
<td>(0.05)</td>
<td>0.74</td>
</tr>
<tr>
<td>24/06/2006 19:00</td>
<td>1.55</td>
<td>(0.05)</td>
<td>0.36</td>
</tr>
<tr>
<td>25/06/2006 7:00</td>
<td>0.90</td>
<td>(0.12)</td>
<td>0.56</td>
</tr>
<tr>
<td>25/06/2006 19:00</td>
<td>0.58</td>
<td>(0.14)</td>
<td>0.91</td>
</tr>
</tbody>
</table>
8. Figure Captions

Fig 1. Satellite mosaic image showing the Blodgett Forest Research Station in the forested western foothills of the central Sierra Nevada of California, and the mixed use (agricultural and urban) areas of the nearby Sacramento Valley area.

Fig 2. Schematic illustration of the air sampling manifold with critical orifice flow inlet and air filter. Automated instrument zero and span calibrations are performed by periodically flowing N\textsubscript{2} into inlet, either without or with the addition of NH\textsubscript{3} from a permeation tube source.

Fig 3. Time series of NH\textsubscript{3} mixing ratio showing transient decay following removal of NH\textsubscript{3} span gas from zero air flow to instrument inlet.

Fig 4. Hourly NH\textsubscript{3} mixing ratios measured at Blodgett Forest in June, 2006. NH\textsubscript{3} data from the laser-spectrometer (black symbols) are averaged into 12 hour bins for comparison with integrating filter samples (blue symbols) collected with a sampling system provided by the Desert Research Institute.

Fig 5. Mean diurnal variation in surface NH\textsubscript{3} mixing ratio from June 11th to 26th, 2006.

Fig 6. Comparison of NH\textsubscript{3} mixing ratio (black) and aerosol-gas equilibrium partitioning coefficient, K\textsubscript{p} (red), indicating minimum product of gas phase NH\textsubscript{3} and HNO\textsubscript{3} mixing ratios necessary for NH\textsubscript{4}NO\textsubscript{3} aerosol to be found in equilibrium with gas phase constituents.
Figure 7. Power spectra of covariance in vertical wind speed with sonic temperature, $w' T'$, smoothed sonic temperature, $w' T'_{sm}$, and fluctuations in NH$_3$ mixing ratio, $w' \text{NH}_3'$. The straight line in upper right shows -4/3 slope expected for fluctuation spectra in an inertial sublayer.

Figure 8. Eddy covariance measurement of NH$_3$ flux for all time points (crosses) and for those passing quality control criteria for use in calculating deposition velocities (filled squares).

Figure 9. Scatter plot comparison of measured deposition velocity, v_d, and maximum deposition velocity in the case that all molecules reaching the leaf surface are absorbed, $v_{d_{\text{max}}}$.

Figure 10. Map of California showing estimated NH$_3$ emissions (ng NH$_3$ m$^{-2}$ s$^{-1}$) and an example 12hr back trajectory calculation of showing particles converging at BFRS at midday on June 12th, 2006.

Figure 11. Measured hourly NH$_3$ mixing ratios from LBNL system (black points), DRI 12 hour integrated sampler results (blue points), and predicted NH$_3$ mixing ratios predicted from the back trajectory calculations and cattle-only NH$_3$ emission inventory. Predicted NH$_3$ is scaled to fit on plot so that NH$_3$ predicted without deposition (red line) is scaled by a factor of 0.5, while NH$_3$ predicted with deposition (green line) is scaled by a factor of 2.

9. Figures
Fig 1. Satellite mosaic image showing the Blodgett Forest Research Station in the forested Western foothills of the central Sierra Nevada range of California, and the mixed use (agricultural and urban) areas of the nearby Sacramento Valley area.
Fig 2. Schematic illustration of the air sampling manifold with critical orifice flow inlet and air filter. Automated instrument zero and span calibrations are performed by periodically flowing N$_2$ into inlet, either without or with the addition of NH$_3$ from a permeation tube source.
Fig 3. Time series of NH$_3$ mixing ratio showing transient decay following removal of NH$_3$ span gas from zero air flow to instrument inlet.
Fig 4. Hourly NH$_3$ mixing ratios measured at Blodgett Forest in June, 2006. NH$_3$ data from the laser-spectrometer (black symbols) are averaged into 12 hour bins for comparison with integrating filter samples (blue symbols) collected with a sampling system provided by the Desert Research Institute.
Fig 5. Mean diurnal variation in surface NH$_3$ mixing ratio from June 11th to 26th, 2006.
Fig 6. Comparison of NH$_3$ mixing ratio (black) and aerosol-gas equilibrium partitioning coefficient, K_p (red), indicating minimum product of gas phase NH$_3$ and HNO$_3$ mixing ratios necessary for NH$_4$NO$_3$ aerosol to be found in equilibrium with gas phase constituents.
Figure 7. Power spectra of covariance in vertical wind speed with sonic temperature, $w'T'$, smoothed sonic temperature, $w'T_{sm}'$, and fluctuations in NH$_3$ mixing ratio, $w'NH_3'$. The straight line in upper right shows \(-\frac{4}{3}\) slope expected for fluctuation spectra in an inertial sublayer.
Figure 8. Eddy covariance measurement of NH$_3$ flux for all time points (crosses) and for those passing quality control criteria for use in calculating deposition velocities (filled squares).
Figure 9. Scatter plot comparison of measured deposition velocity, v_d, and maximum deposition velocity in the case that all molecules reaching the leaf surface are absorbed, $v_{d_{\text{max}}}$.
Figure 10. Map of California showing estimated NH$_3$ emissions (ng NH$_3$ m$^{-2}$ s$^{-1}$) and an example 12hr back trajectory calculation of showing particles converging at BFRS at midday on June 12th, 2006.
Figure 11. Measured hourly NH$_3$ mixing ratios from LBNL system (black points), DRI 12 hour integrated sampler results (blue points), and predicted NH$_3$ mixing ratios predicted from the back trajectory calculations and cattle-only NH$_3$ emission inventory. Predicted NH$_3$ is scaled to fit on plot so that NH$_3$ predicted without deposition (red line) is scaled by a factor of 0.5, while NH$_3$ predicted with deposition (green line) is scaled by a factor of 2.