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ABSTRACT

A nonlinear model of the collisional trapped-ion
mode in tokamak geometry is presented, in which the ‘ -

energy in long wavelength instabilities is transferred

. : to short wavelength modes which are then damped by ion
bouncé resonances. Near marginal stability, the
saturation of a single unstable Fourier mode is computed.
‘Far from marginal stability, steady state nonlinear
solitary waves containing many Fourier modes are fouhdf

Particle transport is computed in both cases.
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It is well known;_4_that p;asma gpnfiggﬁent in toroidal
devices méy be seriously impairéd by the deQelmeeﬁt of.insta— L
bilities associated with the tfapped particies,-namely-that
ciaSs of particles which oscillate in magnetic wélls.created'b§
_thg iqhereﬁt'magnetic field inhomogeneity. In the nekt.generé—
“tion 6f tokamaks, the ion temperéture‘shoula bé sufficiently
Vlarge fbr the ions to enterAthe‘banana.regime. Iih this pérameter
' ‘ ' eff

range (where the effective ion,colliéibn frequency, 2

’ ié
less than theAtrapped ion bounce frequency wgi).the dissipative"
-trappgd-ion mode, a drift Qave»driven ﬁnstable by electron
collisions, is theoretically predicted'toAappéaf.. |
I. »Se§eral'au§hors;—4 have studied the linear:developmgnt of
this instability which appears. in the limit whére,the mode
frequeqcy.woAis.mﬁch<léés-than both the trappea ion bounce ‘ o L .
f{sguency and the effective'electronfcbliisioﬁ frequency:, ‘
- eff ' -

(v_ = e = ye/e » where ¢ = r/R is the inverse aspect ratio)..

In this limit, the linear dispérsion relation is

w= o+ if(e] /v )= v, - Yip) N
1/2 - : : . : .
where‘wo_z e’ w,/2 , w, being the electron diamagnetic drift
frequghCy, v, = viff = v;/e is the effective ion collision '

frequencyland YLb , which represents the effect of Lahdau damp-

irig by ion bounce resonances, is given by

o 3 4, T3 '
YLD—A.(l,-Eni)wO/‘(»wbi') N o (2) ' *



where A' is a constant of order unity and n, = dQnTi/dan is
required to be less than 2/3 to ensure Landau damping rather
than growt;h'.z-4

In this letter, we study the nonlinear evolution of this
mode in order to determine the saturation level of the fluctuat-
ing electric fields. .Knowing the saturation'level we then
compute the particle transport causéd by this instability. The
analysis is perfdrmed'using a slab model, first proposed by
Kadomtsev and Pogutse,5 whigh includes the nonlinear g X § motion
of the trapped particles. Other ndnliheér effeqts, such as
pérticle detrapping4by the electrostatic potentialGAare not
includea in this treatment. The 5asic mechanism for the satura-
tion of the mode is the effective transfer of energy from long
Wavelength to short Wavelength modes which are ﬁhen damped by
ion'bounce resonances for sufficiently weak temperature
gradients (ni < 2/3). | .

The basic model consists of the two dimensional continuity
equations describing the field-line-averaged E x §.cbnvectionA

of the trapped.particles:

T A T 1/2 . '
ane’i/at‘+ c(é x Y¢/B).Yne,i = _V—,+[ne,i - € ng exp(ie¢/T)].
‘ (3)
and the quasineutrality condition
T 1/2 T 172
n, + (1l-¢ / )nO exp (e¢p/T) = n; + (1 - el/z)no exp (-e¢/T) (4)

’

T . . . .
where n, , 1s the number density of trapped particles, 51/2 is



a measure of the fractionjéf Efépbed-particles, and the unit .
vector & is directed along the magnetic field. These equations
are analyzedAin the slab limit with the usual coordinate r ,
r(® - ¢/q), (¢ , 6 being the toroidal and poloidal angles and gq
the safety factor) replaced by x , ¥ - '

In the limit, v_ >> d/dt ~ Wy >> v, appropriate to the
' dissipative trapped-ion mode we combine Egs. (3) and (4) to obtain

the following nonlinear partial Qifferential equation for the

flubtuating_potential ¢ = e¢/T

2 2,  V 2
¢ -39 * 379 * 30
— 4+ VvV, — + - +v,0o =20 (5)
ot * ?y ayz _'el/g oy +
— 1/2 ' o o < '
where VvV, = -(¢ /2)(cT/eB)_(32nn/3x) is the trapped electron .

diamagnetic drifﬁAvelocity. "In defiving Eg. (5), we ha?e
asstmed (i) e$/T << 1 so that exp(e¢/T) =1 + e¢/T and (ii) the
gfadient_in nﬁmber density is constant so that terms involving
az-n/ax2 can be dropped. We also find that the cdntfibution'of
the x derivatives of ¢ to Eg. (5) are smalleg by w_ /v_ = k?v*/v_
than the_contributions from the y dérivatives. This latter fact
enables us to réduce_the basic equations to‘the one dimensional
form. _

‘To lowest order Eg. (5) redﬁces to 8@/3t4+ V, Bé/ay = 0 "
which des;ribes the undamped propagation of drift wé&es in fhe
direction of the electron diamagnetic drift. .In the next order,
movihg to the.driff frame h =y - V,t and neglecting ion ‘ .
collisidns‘oge finds an equafion of the form of - the re?érsed |

Burgers-equation.'- The solutions foafhis equatioh



exhibit gradients that become increasingly strong .(tending
toward discontinuity)as t » « . Thus, Eg. (5) demonstrates the

transfer of wave energy from long to short wavelengths but it

does not contain a mechanism for saturation. As noted earlier,

the linear kinetic theory of this mode indiéates that for
sufficiently weak temperature grédients, the unstable spectrum
is limited at short wavelengths by Landau damping from the ion
bounce resonances.z_4 To incorpqrate this important velocity-
space dissipative effect into our fluid model, we add to Eq. (5)
the damping,term given in Eq. (2), rewritten as

3 84¢/3n4 . When linearized Eg. (5) .now

: T

' .
A' (1 .l.Sni)V*(V*/wbi) |
correctly reproduces the dispersion relation given by Eq. (1).
The Landau damping by ion bounce resonances is the mechanism

through which the plasma absorbs the energy transferred from

' lqgg,ﬁo short wavelengths by the nonlinearity, and thus quenches

the instability after a finite time of growth. Introducing the
dimensionless variables T = (wi/v_)t s E=n/r , ¥ = (v;/el/zwo)Q
where Wy = V,/r the equation describing the growth and saturation .

of the fluctuating potential becomes

2 4

) .
A, 3y, o LA vy + V- ' (6)
3T T 32 22 g 3L B

, g1 L T 2,0 ST .
wherera = A' (1 . l.Sni)(wo/Qbi) (v_/wbi) is a measure of the
relative strength of Landaﬁ damping compared to the electron
collisional growth and v = v_v+/w§ . .Solutions to Eq..(6).are
required to satisfy periodic boundary conditions Y(g) = ¥(& + 2m)

in accordance with toroidal periodicity, over a length 2mr . -



In this 1etter,«éﬁé£€§iﬁé£éf%§1utions are obtained’ for con-
dlthnS near marginal stablllty, and for unstable 51tuat10ns 1n
which many modeS'are ‘excited. The. dlstlnctlon between the two
oasesiis determined by‘the magnitude of'the-Landau,damplng .
factor .o . /

'.TheéFourierfrepresentatiOn;
IP(E T) Z lb (T) ‘sin n& - - . . A1) .-

satlsfles the perlodlc boundary conditions and has the odd parlty,.
w(&) = - w( E) demanded by Eq. (6), Substltutlng this 1nto '

Eq. (6) glves

oy /T -y b = (/2) Y W v - Vo Vmen) (8

o . T o m

where Yﬁ'?'nz = on? - v is the linear growth rate of the nt

?ourierImode.‘-For‘negligible ion'CoilisionaI”damping'(y > 0),

we note that if 0.25 < a < 1 then only the n = 1'modegis
unstable, whlle if o << 14, then all modes with n < a ;/z.will'”
'be unstable. Near marginal stability where there is only a -single

unstable mode with a. small growth rate, Eq..(8)_can be solved by

a mode coupllng calculatlon.. Lettlng n p be the Single unstable
mode, it is seen that the mode grows tlll the quadratlc non—
llnearlty effectlvely couples 1t to the nonllnearly generated

damped mode n=2p . the equatlons descrlblng coupllng between

the'two'modes are:.



3 /3T - = - b . oy >0 (O
awp/ar Yo wp 4.’pwp wzp‘ ‘Y > | | (9)

2 .
- = ' . 10
awzp/ar YZP pr pd)p ' Y <0 . (10)

which can be solved to obtain expressions for wp(T) and wzp(I) .
‘We note that as T > « v+ (v |y |)l/2/p'and ¥ > Yy./p -
' P P 2p 2p 'p
The case 0 < a << 1 , far from marginal stability, can be
studied by using a multiple scale length expansion to obtain a

steady.state solution to Eq. (6). With v = 0 the equation to

be solved is
G oty ay? ' -
—5 +to —p* 5g =0, where Y(£ + 2m) = y(&) = -¥(-&) . (11)

) - If the nonlinear term in Eqg. kli)‘wefé missing, then the
periodic solutions of the linéar equationjwould haQé a spatial
dependence like sin E/ocl/2 . Since o >> 1 , this space‘scale
variation is much fasterAthan £ . ~éuided by thié}.wé introduce

two space scales and look for solutions which may be éxpénded

in the forﬁ:
o - . 12, 125
v = A(E) + C (€) sinfg/a™/ + up (B)ag]

g + o2 ¢ (&) sin[26/0'/? + al/zj w(EVE] + ... - (12)

}. ) . . : \
where the quantities A(Z) , Cl(E) , etc.,.are also to be expanded

1/2

. in power series in a We substitute Eq. (12) into Eq. (ll):



and keep terms of order a—l/z and terms of order unity. After

‘some straightforward algebra, we find

1 - .oaAa 93 2 1.2 _
T AC, =0 ; — + 5E (A" + 5 CJ) =0 (13)
£}
o aa24 a2 3 R S o
2Cyuy = 3§_c1/ag - Cy/12 ;5 ¢, = cy/1z2. . (14)
Equatidns~fl3) are'solved‘éimuitaneoﬁsly'to'obtain
C, = Cmnd(xgiki | | ) _ - (15).
A = k% sn(AE,K)en(AE,k)nd(AE,k) o (16)
o , - "y _ S . ‘
,'with‘k = Cm/2k' and k' = 1 - k , where A and k are unknown

consgants. The Jacobi_eliibtié‘functibns hd(u,k)‘; sn(u;k) .
'and;cn(u;k) are periodic,functions ofiu with a'périddicit?iv |
2K(ki for béth nd and the érodﬁét of sn'withucniilK(k)_5eing' 
chévcompieﬁé éiliétic intééral of}the:fifSt.kind. | | -
. From the periéaic boundary conditiOné, w(£4¥ 2"5"=j¢(§) ;'
it follows that A( + 2m) = A(Z) and cl(g'+ 2m) = ¢, (£). The
periodicity of A and Ci.is aséuied'by th¢ ¢hoicé 2mA = 2K (k)
whence ﬂCﬁ'= ék'K(k) . The periodicity 6n.the’slow scale of

the sine function in Eg. (12) demands

2 _ 1 _ K(k)
, 0('1/2 o . 21T2"'>'

3

[3(2 - khxoo - 2 E(k>}E F(k) ~ (17)



\

where & is the integer nearest to l/al/z, and E(k) is the com-
plete elliptic integral of the second kind. The function F (k)
varies between - 1/24 for k = 0 and » for k = 1 . The solution

is then

Y = % nd(%%, k)[kz sn(%?, k)cn(%?, k) + 2(1 - k?)%/? sin(;{%i)]
(18)
valid in the limit a << 1 . The form of Yy for some particular
k values is shown in Fig. 1.
With the fluctuating electrostatic potentials driven by the
instability calculated in the two limits o ~ 1 and o << 1 we

can compute the particle transport using the expression

- T (EB) S (@) e

/

—

for the diffusion coefficients.

2 2

€

53/2

o cT L .
v (v_ erB Yp|Y2P| fo? o~ 1 (20)
T 3 - ,
3/2 ,w., 2 i
_ € bl) ( cT )
D " ( =B f (k) for o << 1 (21)

where f(k) = 2E(k)K(k)/1r2 ; over a broad range of k within
0 <k <1, we have f(k) ~ 0.5 - 1.0 .

In this paper we have analyzed the nonliheaf evolution of
the dissipative trapped-ion mode for conditions near marginal

stability (a ~ 1) and for situations where many linearly



tnstable modes:are-present (0 << 1). 1In each case the convective
'honlinearity transfers enérgy frpm long waveiength modes -to short
Waveienéﬁh modes which-afe then Landau dampedAby ion bounce resoF
nances. The saturated potentials have been computed and used to
calculate the diffusion that results.from the instability. Theb
diffusion éoefficienﬁ'is a ‘strongly indreasiﬂg fuhétion of tem—
perature. However, for higp tempéfatqres the ratio of the mode

frequency to the efféctive electron collision frequency,'wo/v_ o

which is an expansion parameter in both the usual. linear theory BN
' andiogr;nonlinear analysis becomes of the_order unity or more.

Henée,‘in this regime our.analysis ceases to be'vaiid.;

Parameters of‘next4generation tokamaks typically fall into the

regime wo/v; << 1, and so it is of interest to compare the

rélétivé magnitudes of ﬁhe diffusion coefficient givenAin Eq. "
(21) to one suggested by Kadomtsev andiPoguts’e,5 namely o

D ~3(r/R)S/Z(cTe/eB)2/4veri . For typical parameters (ﬁ-ulﬂl4cmf3,

_T.~.2 kev (‘Rl= 150 cm , r, = 50 cm , B = 50 kG , g é“3)'we fiﬁd
“that our diffusion‘coefficiént is about a'factof 6 smaller than
Kadomtse? and Poéutse's.. |
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'Fig.’l. Typical potential waveform computed using Eg. (18)
with a = 0.01 and k = 1. :
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