RETENTION TIME EFFECT ON METAL REMOVAL BY PEAT COLUMNS

PDF Version Also Available for Download.

Description

The potential use of a peat bed to treat the H-12 Outfall discharge to bring it to new compliance limits was previously investigated and reported utilizing a 7 hour retention time. The influence of retention time (contact time) of water with peat moss on the removal of copper from the water was investigated under laboratory conditions using vertical flow peat moss columns. Reduction of the necessary retention time has a large influence on the design sizing of any peat bed that would be constructed to treat the H-12 discharge on a full scale basis. Retention times of 5 hours, 3 ... continued below

Creation Information

Nelson, E February 28, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The potential use of a peat bed to treat the H-12 Outfall discharge to bring it to new compliance limits was previously investigated and reported utilizing a 7 hour retention time. The influence of retention time (contact time) of water with peat moss on the removal of copper from the water was investigated under laboratory conditions using vertical flow peat moss columns. Reduction of the necessary retention time has a large influence on the design sizing of any peat bed that would be constructed to treat the H-12 discharge on a full scale basis. Retention times of 5 hours, 3 hours and 1 hour were tested to determine the copper removal by the peat columns using vertical flow. Water samples were collected after 4, 8, 12, and 16 water volumes had passed through the columns and analyzed for a suite of metals, with quantitative emphasis on copper. Laboratory results indicated that copper removal was very high at each of the 3 retention times tested, ranging from 99.6 % removal at 5 and 3 hours to 98.8% removal at 1 hour. All these values are much lower that the new compliance limit for the outfall. The results also indicated that most divalent metals were removed to their normal reporting detection limit for the analytical methods used, including zinc. Lead levels in the H-12 discharge used in this study were below PQL in all samples analyzed. While each of the retention times studied removed copper very well, there were indications that 1 hour is probably too short for an operational, long-term facility. At that retention time, there was about 6% compaction of the peat in the column due to the water velocity, and this may affect long term hydraulic conductivity of the peat bed. At that retention time, copper concentration in the effluent was higher than the other times tested, although still very low. Because of the potential compacting and somewhat reduced removal efficiency at a 1 hour retention time, it would be prudent to design to at least a 3 hour retention time for water in any peat bed system that is proposed for the H-12 Outfall. A scope to design and install a pilot level study at H-12 is currently under development. This study will be designed to examine some of the engineering issues that are of concern regarding the scaling of an actual peat bed to treat the volumes of water that are typically discharged through the H-12 Outfall. Different hydraulic paths and configurations are expected to be part of that scope.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-STI-2007-00089
  • Grant Number: DE-AC09-96SR18500
  • DOI: 10.2172/900804 | External Link
  • Office of Scientific & Technical Information Report Number: 900804
  • Archival Resource Key: ark:/67531/metadc879039

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 28, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 2, 2016, 5:07 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Nelson, E. RETENTION TIME EFFECT ON METAL REMOVAL BY PEAT COLUMNS, report, February 28, 2007; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc879039/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.