The Application of the Principal Curve Analysis Technique to Smooth Beam Lines

PDF Version Also Available for Download.

Description

The smoothness of a beam line refers to the quality of the relative positioning of a number of adjacent beam guiding components. The fact that smoothness is of highest priority when positioning magnets can be seen in the local tolerances imposed by the beam optics. In the past, smoothing has been done by separating horizontal and vertical misalignments and then applying some sort of analytical or manual ''feathering'' technique. The Stanford Linear Collider (SLC) did not easily lend itself to this sort of smoothing because of the highly coupled nature of its pitched and rolled beam line. This paper will ... continued below

Creation Information

Friedsam, H.; Oren, W. & /SLAC August 12, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The smoothness of a beam line refers to the quality of the relative positioning of a number of adjacent beam guiding components. The fact that smoothness is of highest priority when positioning magnets can be seen in the local tolerances imposed by the beam optics. In the past, smoothing has been done by separating horizontal and vertical misalignments and then applying some sort of analytical or manual ''feathering'' technique. The Stanford Linear Collider (SLC) did not easily lend itself to this sort of smoothing because of the highly coupled nature of its pitched and rolled beam line. This paper will discuss an attempt to develop a repeatable method which is independent of the inconsistencies of human judgment and can simultaneously smooth in two or more dimensions. Four major goals were defined for the smoothing algorithm used on the SLC alignment. The first, was to simultaneously model errors for both horizontal and vertical directions. Secondly, a smooth curve whose shape was suggested by the data and not by a predetermined model was implied by the fact that unknown systematic errors were being eliminated. Thirdly, this curve must be a reproducibly fit, independent of the inconsistent nature of human judgment. Fourth, the result of the procedure was to minimize the number and size of magnet movements to reach the final alignment criteria.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SLAC-PUB-11408
  • Grant Number: AC02-76SF00515
  • DOI: 10.2172/878884 | External Link
  • Office of Scientific & Technical Information Report Number: 878884
  • Archival Resource Key: ark:/67531/metadc879026

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 12, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 8:18 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Friedsam, H.; Oren, W. & /SLAC. The Application of the Principal Curve Analysis Technique to Smooth Beam Lines, report, August 12, 2005; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc879026/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.