

Mathematically Reduced Chemical Reaction
Mechanism Using Neural Networks

Technical Progress Report

Period ending: 09/30/2005

Prepared by

Nelson Butuk
Principal Investigator

Department of Mathematics
Prairie View A & M University
Prairie View Texas. 77446-4189

December, 2005

DOE Grant Number: DE-FG26-03NT-41913

Office of Sponsored Programs
Prairie View A & M University

P. O. Box 667
Prairie View Texas 77446-0667

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herin do not necessarily state or reflect those of the United
States Government or any agency thereof.

 2

Abstract
This is an annual technical report for the work done over the last year (period ending

9/30/2005) on the project titled “Mathematically Reduced Chemical Reaction Mechanism
Using Neural Networks.” The aim of the project is to develop an efficient chemistry model for
combustion simulations. The reduced chemistry model will be developed mathematically
without the need of having extensive knowledge of the chemistry involved. To aid in the
development of the model, Neural Networks (NN) will be used via a new network topology
know as Non-linear Principal Components Analysis (NPCA).
 We report on the development of a novel procedure to speed up the training of NPCA.
The same procedure termed L2Boost can be used to increase the order of approximation of the
Generalized Regression Neural Network (GRNN). It is pointed out that GRNN is a basic
procedure for the emerging mesh free CFD. Also reported is an efficient simple approach of
computing the derivatives of GRNN function approximation using complex variables or the
Complex Step Method (CSM). The results presented demonstrate the significance of the methods
developed and will be useful in many areas of applied science and engineering.

 3

TABLE CONTENTS

Disclaimer 2

Abstract 3

Introduction 5

Basic Theory of GRNN 7

Complex Variables Method of Derivatives (CSM) 12

Boosting 14

Boosting and Hierarchical Training of NPCA-NN (HT of NPCA-NN) 14

Results and Discussions 14

Conclusion 23

References 24

Figures 1-10 26

 4

Introduction

This is an annual technical report for the work done over the last year (period ending
9/30/2005) on the project titled “Mathematically Reduced Chemical Reaction Mechanism
Using Neural Networks.” The aim of the project is to develop an efficient chemistry model for
combustion simulations. The reduced chemistry model will be developed mathematically
without the need of having extensive knowledge of the chemistry involved. To aid in the
development of the model, Neural Networks (NN) will be used via a new network topology
know as Non-linear Principal Components Analysis (NPCA).
 Many Combustion systems are modeled by very high-dimensional systems of non-linear
differential equations. These equations often exhibit solutions which are un-evenly distributed in
phase-space, and which may exist as circles, tori or other manifolds. It is desirable to
approximate these isolated regions of the phase-space by a mathematical model of lower
dimension than the dimension of the original ambient space. We propose to develop NPCA to
accomplish this task using NN.
Given a data set X ∈ Rn NPCA determines a reduction mapping
 G: X →Y
where the set Y ∈ Rm has reduced dimension m < n. Y is then said to be a reduction of X. The
inverse mapping reproduces the original data X from the reduced data set Y as
 H: Y → X
Hence, NPCA is a composition of mappings which is the same as the identity mapping, i.e.
 H o G: X → X

 The NPCA is a NN topology with five layers, in which the input layer has the same
number of nodes as the output layer. This allows the input values to be used as target output
values of the network during training. The first part of the network approximates the mapping G.
It contains the mapping layer. The middle layer is the bottle-neck layer consisting of the m nodes
(i.e. desired reduced dimension m). The last part of the network implements the mapping H and
contains the de-mapping layer. This layer takes the output of the middle layer and maps it onto
the output layer. It is on the bottle-neck layer, that the reduced manifold of the chemistry is
reconstructed.
 The Objectives of this research are therefore:
1. Improve the training rate of the NPCA-NN algorithm developed previously.
2. Develop a method to determine optimum trajectory data of reaction mechanisms needed to

use NPCA-NN.
3. Apply the NPCA-NN algorithm to the reduction of Dimethyl ether (DME) mechanism.
4. Couple the developed NPCA-NN model to the KIVA CFD code.
5. Test the CFD code on a few other simple sample mechanisms
6. Student Education in Computational Applied Mathematics

During the past year, we have spent considerable amount of time developing a detailed
understanding of the mathematical theory of function approximators (or estimators). The various
techniques developed for function approximation are all grounded in well developed
mathematical procedures, which if well understood will guide in the development of new
consistent application methods. Because of this main reason, we have reviewed the basic theory

 5

underlying most function estimators. As a result of this review this report presents significant
new results that will aid in the overall long term objectives of this work. An approach to improve
the training speed of NPCA-NN will be described as well as recent published theoretical results
to support the method. Also to be described is a new mesh free approach to modify our in-house
developed CFD code in partial fulfillment of objective 4. The approach to be described, we
believe will have significant impact to the emerging field of mesh free CFD. First to be
described is some mathematical theory of function estimators.

In general, function estimators can be classified as being parametric or nonparametric. Most
modern approaches, that include Neural Networks (NNs), the subject of this work fall under the
category of nonparametric methods. Within the nonparametric category, we also classify
methods according to the approach used in constructing the estimator. These include methods
based on; (i) local averaging (ii) local modeling, and (iii) global modeling or least squares
estimation. Examples of local averaging methods include; K-nearest neighbor (K-NN),
Generalized Regression Neural Network (GRNN) also known as Nadaraya Watson (NW)
estimator, and the partitioning estimator, as well as several kernel based estimators, Hastie et al.
(2001). These methods fit a constant locally to the data hence the term “local averaging”. In
methods based on local modeling, instead of fitting a constant to the data, a more general
function is fitted locally to the data. Examples of this approach include; local polynomial kernel
estimators and the popular Moving Least Squares (MLS) estimator, used in emerging meshfree
CFD, Liu (2003). Finaly, in the global modeling approach, data are fitted globally. Example
methods include; orthogonal series estimators, cubic spline smoothers, and neural networks, the
approach of this research. Wavelets are also classified under this category.

In our research to develop efficient neutral network based chemical reaction mechanism,
reduction model, NPCA-NN, we have sought to develop a model that will incorporate some of
the desirable properties of GRNN into the NPCA-NN model. In order to be able to do this, we
have focused our study of the theory of function approximation on the GRNN. Below will be
presented a summary of this theory, which will allow us to point out some of the characteristics
of the estimator. As part of a masters thesis supported by this research, we have successfully
demonstrated a new approach of estimating the derivatives of the GRNN approximated function.
This new approach uses the Complex Step Method (CSM) to be described below, to compute
accurate derivatives of the approximated function. This technique was demonstrated using the
GRNN estimator, however, the approach is applicable to any of the nonparametric estimators
mentioned above. Derivatives approximation is an important part of this research as they will be
required in the coupling of developed NPCA-NN model to CFD, the 4th objective of this
research.

Compared to the traditional approaches of computing numerical derivatives using finite
differencing or kernel differentiation, Mustafi (1978) and Schuster (1969), we show that the
CSM approach is faster and much simpler to implement. Demonstrated also is a simple and fast
boosting technique for GRNN that significantly improves the accuracy of first order derivatives.
It is shown that this boosting is necessary because one of the arguments against GRNN is its
“low order” of consistency. Consistency is one way of comparing estimators. The accuracy or
desirability of an estimator can be based on the highest order polynomial that the estimator can
represent “exactly”. An estimator is then said to be consistent to order n, if n is the highest order

 6

polynomial it can represent exactly. Because the GRNN fits a constant to data, it is of 0-order
consistency. This has been the main argument used against the use of GRNN as an estimator,
despite it being of low computational cost and simplicity of implementation. It is shown that with
boosting this arguments is no longer valid and when combined with CSM makes GRNN
attractive not only for this work but many application areas of science and engineering. For
example the new emerging field of mesh free CFD and nano-computing.

In this report it is demonstrated the “boosting” of GRNN to increase its consistency and we also
show that the CSM is superior to the traditional robust approach of kernel differentiation to
obtain derivatives of approximated functions. It is considered that this successful demonstration
of the superior advantages of computing the derivatives of GRNN using CSM is significant
development resulting from this research. In CFD, GRNN is a basic method for the emerging
mesh free methods, Liu (2003). One argument against these mesh free methods is the difficulty
and time consuming approaches of computing derivatives necessary to solve the Navier-Stokes
equations of fluid flow. In fact it is often necessary to introduce approximation methods of
computing derivatives (due to the complexity of analytic differentiation methods) as is done in
Onate, et al. (1996). By successfully demonstrating an efficient accurate approach of computing
derivatives of GRNN, a solution for the major argument against mesh free methods will begin to
emerge. For this reason, the new algorithm (that combines “boosting” and CSM) to be fully
presented in the results section of this report, may be subject to Intellectual Property Protection
(IPP), prior to public release.

The rest of this report is organized as follows; first we present a summary of the basic
mathematical theory of GRNN and related kernel based methods. Next will be described a
simple recently introduced booting technique to improve the consistency of GRNN. The
relationship of this boosting technique to the hierarchical training of NPCA-NN (HT of NPCA-
NN), 1st objective above will be pointed out. The approach of CSM will be given a brief
summary. Methods of improving the computational efficiency of GRNN will be described as the
report evolves. Finally, the main results of this work will be presented.

Basic Theory of GRNN

The presentation below can be found in many statistical books including Scott (1992) and Wand
and Jones (1995). We have tried to present a simplified explanation of mathematical derivations
and or proofs that should be accessible to many audiences across different fields.

In function approximation one considers a data vector (X,Y), where X is ℜd

 - valued and maybe
fixed deterministic set of points or random set of points. This will result in what is popularly
referred to as a fixed design model or a random design model. Y is random and ℜ -valued. Our
interest is to specify a relationship between the dependent variable Y, and the independent
variables X. That is we need to find a measurable function m: ℜd → ℜ, such that m(X) is a
“good approximation of Y” in some sense. We usually require that the L2 risk or mean squared
error of m
 2

2 ()L E m X Y⎡ ⎤= −⎣ ⎦ (1)

 7

be as small as possible. The symbol E[u] is known as the expectation of u, Higgins and Keller-
McNulty (1995). The expectation of a continuous variable u with density f(u) is
 [] ()E u uf u du= ∫ (2)
So our interest is to minimize the expectation of the squared distance between m(X) and Y. For a
given data point (or instance of data) (x,y) our model becomes
 ()y m x ε= + (3)
where ε denotes an iid independent realizations of a random variable (error) with mean 0 and
variance σ2. Note that our data samples consists of n-pairs of observations {(X1,Y1)…(Xn,Yn)}.
In this report we will interchangeably use subscripted upper case variables (Xi,Yi) or just lower
case variables (x,y) to refer to a single observation from the set of available data points (X,Y).
The sampled data points are drawn from a population with a joint probability density function
(pdf), f(x,y), whose form is unknown. In order to estimate this joint pdf, we need to be able to
estimate the univariate pdf, f(x) of the independent variables X. The details of derivation of an
estimate of f(x) from data follows.

In estimating f(x), we shall follow the approach first introduced by Parzen (1962). At a point x
we want to be able to use local information as much as possible to estimate f. One simple
classical estimator for f is the histogram. However, with the histogram, the estimated function is
not smooth and it also has jumps which gives the estimation of f a step wise nature. Parzen
addressed this issue by introducing a real positive kernel function K(u) to specify the way the
local information is averaged by weighting. Where now the kernel function specifies the weights.
The general kernel density estimator at a point x is

1

1ˆ ()
n

i

i

x Xf x K
nh h=

−⎛= ⎜
⎝ ⎠

∑ ⎞
⎟ (4)

where, h is termed the bandwidth of the kernel. A kernel function assigns weights to the
contribution given by each data point, Xi to the kernel density estimator, depending on the
proximity of Xi to x. Typically kernel functions are positive everywhere and symmetric about
zero. K is usually a density such as the normal pdf. If f is multivariate and of dimension p, i.e. x
= (x1 … xp), Xi = (Xi1 .. Xip), then a so called “product kernel” is used and the density estimate
for f is now

1 1

1 1ˆ ()
pn

j ij

i j j j

x X
f x K

n h h= =

⎛ ⎞−
= ⎜⎜

⎝ ⎠
∑∏ ⎟⎟ (5)

We will now continue our derivation of the function estimator, of our data (X,Y). If we
consider a single observation of the data, the conditional mean is

ˆ ()m x

 ()E Y X x m x⎡ = ⎤ =⎣ ⎦ (6)
and the conditional variance
 () 2 ()Var Y X x xσ= = (7)
In order to simply analysis, as states above, we will assume that the variance is constant

2 ()x 2σ σ= . From the basic definition of conditional expectation:
 []| (Y X x y f y x dxΕ = = |)∫

 8

(,)

(,)

yf x y dy

f x y dy
= ∫

∫
 (8)

As discussed above, we can now use a product kernel to approximate (,)f x y the joint pdf.

1

1ˆ (,)
n

i

ix y x y

ix X y Yf x y K K
nh h h h=

⎛ ⎞⎛ ⎞− −
= ⎜⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠

∑ ⎟⎟ (9)

From the definition of marginal density,
 () (,)f s f s t= dt∫ (10)
The denominator of (8) becomes

 ()
1

1ˆ (,)
n

ii

ix y x y

y Yx Xf x y dy K K dy
nh h h h=

−⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑∫ ∫ (11)

At this point it is convenient to introduce a scaled Kernel ()hK x

 1()h
xK x K

h h
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (12)

An intuitive interpretation of this scaling, is that if K(x) is the density of some random variable
z, then Kn(x) is the density of the scaled random variable hz, that is, h is the scaling parameter. In
particular, if K(x) is the standard normal density (as used in this work) then h plays the role of
the standard deviation. With this scaling we can now write.

1

1ˆ (,) () ()
x y

n

h i h
i

if x y K x X K y Y
n =

= − −∑ (13)

Using the general definition of marginal density, equation (10) above, of variable X, it can be
easily shown that the denominator of (8) reduces to the marginal density of x

 1ˆ (,) () ()
x y

n

h i h i
i i

f x y dy K x X K y Y dy
n =

= − −∑∫ ∫

1

1 (
x

n

h
i

K x X
n =

= ∑)i− (14)

Here we have used one of the properties of the Kernel
 () 1

h
K t dt =∫ (15)

Also it is required that
 ()htK t dt 0=∫ (16)
Implying an order-2 Kernel. A Kernel is classified as belonging to a certain order, if it satisfies
certain moment conditions, Hardle (1990). Using (16) and letting t=y-yi, it can be shown that
 ()h iyK y Y dy Yi− =∫ (17)
therefore, the numerator of (8) is

 9

1

1ˆ (,) ()
x

n

i h i
i

yf x y dy Y K x X
n =

= −∑∫

Our final function approximator becomes

 1

1

()
ˆ ()

()

x

x

n

i h i
i

n

h i
i

Y K x X
m x

K x X

=

=

−
=

−

∑

∑
 (18)

This is the GRNN, as we have reported without detailed derivations in our past reports. In
statistics literature this approximator is also known as Nadaraya Watson Kernel Regression
estimator, Nadaraya, (1964) and Watson, (1964).

Our next question to consider is how good an estimator is GRNN?. To answer this question we
have to determine the mean squared error (MSE) or the L2-norm mentioned above (1). To do
this, our first step is to decompose the MSE into the so called “Bias-Variance Decomposition”.
We now describe how this is done. In classical parametric estimation, it is customary to measure
the performance of an estimator, θ̂ , in comparison to the true value, θ , by the mean square error
(MSE).
 2ˆ ˆ() [()]MSE Eθ θ θ= −
If we subtract E[θ̂] and add E[θ̂] to the term in parenthesis
 2ˆ ˆ ˆ ˆ() (() ())MSE E E Eθ θ θ θ θ⎡ ⎤= − + −⎣ ⎦

Now let µ = E[θ̂]
 2ˆ ˆ() ()MSE Eθ θ µ µ θ⎡ ⎤= − + −⎣ ⎦

 2 2ˆ ˆ() 2()() ()E θ µ θ µ µ θ µ θ⎡ ⎤= − + − − + +⎣ ⎦

Term by term expectation results in the middle term being zero
 2 2ˆ() ()E θ µ µ θ⎡ ⎤= − + +⎣ ⎦

The first term inside the brackets is a random variable with mean zero and the second term is a
constant. From definition, Higgins and Keller-McNulty (1995),

 2 2 2()E c z c E z⎡ ⎤ ⎡+ = + ⎤⎣ ⎦ ⎣ ⎦
where c is a constant and z is a random variable with zero mean and finite variance. Therefore
 2 2ˆ ˆ() () ()MSE Eθ µ θ θ µ⎡ ⎤= + + −⎣ ⎦

replacing µ
 2 2ˆ ˆ ˆ ˆ() ([]) ([])MSE E E Eθ θ θ θ θ⎡ ⎤= + + −⎣ ⎦

finally
 2ˆ ˆ() () ()ˆMSE Bias Varθ θ= + θ (19)

 10

This is the decomposition of MSE into variance and squared bias. This result tells us that in order
to analyze a given estimator, via the MSE criteria, all that we need to do is to compute the
expected mean and variance of the estimator. This will be done for the GRNN next.

First define two functionals S and R

 2() ()S g z g z dz= ∫

 2() ()R g g z d= z∫ (20)
recall that the GRNN equation above can be written as

ˆ()ˆ () ˆ ()
r xm x
f x

= (21)

In order to compute the expectation and variance of , we will need to compute the values
for and

ˆ ()m x
ˆ()r x ˆ ()f x separately. These derivations are long and tedious. Here in this report we will

present only the results and will describe detail derivations in a follow-up report. First the values
for ˆ ()f x are

2()ˆ () () ()

2
f x hE f x f x S K
′′⎡ ⎤ +⎣ ⎦

 () () ()ˆ () R K f xVar f x
nh

 (22)

The values for are ˆ()r x

 [] 2 1 1ˆ() () () () () () () () () ()
2 2

E r x f x m x h S K f x m x f x m x m x f x⎡ ⎤′ ′ ′′ ′′+ + +⎢ ⎥⎣ ⎦

 () 2 2() ()ˆ() [()]R K f xVar r x m x
nh

σ + (23)

where σ2 is the variance in (3). Combining (22) and (23) to obtain values for is also more
involved since you now have a ratio of two random variables. The final results are:

ˆ ()m x

 [] 21 (ˆ () () () () 2 ()
2 (

)
)

f xE m x m x h S K m x m x
f x
′⎡ ⎤′′ ′+ +⎢ ⎥

⎣ ⎦

 ()
2 ()ˆ ()

()
R KVar m x

nhf x
σ (24)

The MSE() can now be written in the form of (19) as ˆ ()m x

()
2 2

4 21 ()ˆ () () () 2 ()
4 ()

()
()

f x RMSE m x h S K m x m x K
f x nhf x

σ′⎡ ⎤′′ ′+ +⎢ ⎥
⎣ ⎦

 (25)

One of the beneficial results of performing the above tedious analysis for any given estimator is
that we can now look at the final result , i.e equation (25) and make certain conclusions.

 11

One of the main conclusions is made by inspecting the bias term (first term of 25). If the term
f(x) is present, then it means that the estimator is dependent on the density of the design points.
In other words, in the language of CFD, the estimator is not “mesh free”. It is design points or
grid points dependent. In this sense, the GRNN is not truly mesh free, despite being considered
as the simplest basic method of all mesh free approaches. It is possible to construct, weight
kernels, K, which will make an estimator truly mesh free. This is an area of active research in
mesh free CFD.

The other conclusion to draw form the MSE, equation is on the accuracy (or consistency) of the
estimator. In other words, how will the estimator converge to the true estimate of the unknown
function, m(x) if at all ?. From inspecting (25) it is clear that the GRNN is consistent. This
means that as the number of data points increases the error of approximation decreases. In the
limit as n→∞, h → 0 and nh should tend to ∞. This means that h should approach zero at a rate
that is slower than order O(n-1). A simple optimization of MSE to obtain an optimal h, will
reveal the rate of convergence of MSE to zero. In the case of GRNN, the rate of convergence is
of order O(n-4/5), which as expected is slower than for most parametric estimators with rates of
order O(n-1).

Complex Variables Method of Derivatives (CSM)

Given a complex number z = x + iy, we can write the complex function ()f z as
 () (,) (,)f z u x y iv x y= + (26)
where u and v are real valued functions. Using the basic definition of derivative, we can write

 0
() (() limh

)f z h f zf z
h→

+ −′ = (27)

h can be both real or imaginary. Now as h→0 through real values, the limit ()f z′ must be the
same for both approaches of h to zero. First if h is real,

 0 0 0
() () (,) (,) (,) (,lim lim limh h h

)f z h f z u x h y u x y v x h y v x yi
h h→ → →

+ − + − + −
= +

h
 (28)

 u i v
x x

∂ ∂
= +

∂ ∂
 (29)

Now if h is imaginary

 0 0 0
() () (,) (,) (,) (,)lim lim limh h h

f z ih f z u x y h u x y v x y h v x yi
ih ih ih→ → →

+ − + − + −
= + (30)

 v i
y y

u∂ ∂
= −

∂ ∂
 (31)

Since the limit ()f z′ must be the same, we obtain

 u v uand v
x y y x

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂
 (32)

Which are the Cauchy-Riemann equations. From the first equation

 0
(,) (,)limh

u v x y h v x y
x h→

∂ + −
=

∂
 (33)

and on the real axis y = 0, u(x) = f(x) and v(x) = 0, therefore for real functions

 12

0
(,) ()limh

u v x h
x h→

v x∂ −
=

∂
 (34)

which can now be written as

 []
0

Im ()
limh

f x ihf
x h→

+∂
=

∂
 (35)

This equation is then the basis for the Complex Step Method (CSM) of derivatives. Any code
that computes any given function can be made to compute the first derivatives of the function by
simply converting the code to run using complex variables. In the case of GRNN, when the code
is converted to run using complex variables, the number of operations to compute N values
given n data points is of order O(kNn) (see below). Where k can be as high as 5 depending on
the arithmetic operations used to compute the function, Smith (1998). It can be shown via a
Taylor series expansion that the estimated derivatives are of O(h2), Anderson et.al., (2000).

Boosting

Here is described, a new novel algorithm for raising the order of consistency (reducing the bias)
of the GRNN estimator. The algorithm is based on boosting and is known as L2Boost. Basically
boosting applies a B-steps algorithm to compute B function estimates by repeatedly applying a
given method, called a weak learner (WL) to B different re-weighted samples. The estimates are
then combined into a single estimate which is the final output.

Thus, the basic requirements of boosting is a WL and a method of assigning importance to data
(i.e. a weighting strategy). The WL must have low variance. This is so that each boosting step
makes a small, low variance step, iteratively reducing the bias of the estimator. This means that
from the MSE equation for the GRNN above, a crude GRNN (or WL) will have a large
bandwidth, h, which is larger than the optimal value. The other requirement for boosting, i.e the
weighting scheme is inherent in the implementation of GRNN, via the kernel.

The boosting algorithm implemented in this report is the L2Boost method recently described by
Buhlmann and Yu, (2003). This method was applied to the GRNN, boosting its accuracy
significantly. In L2Boost, a WL is used to iteratively learn the residuals of the estimator in B-
steps. The final result is a combination of the estimates of all of the B-steps. The steps of
implementation are as follows:

Step 1
Apply the crude learner to available data to obtain the pilot estimate 0m̂
 0ˆ () (,)i im x GRNN X Y= (36)
Step 2 repeat for b = 1 … B
Compute the residuals
 1ˆ ()i i b iY m Xε −= − (37)
i.e. use the previous estimate of to compute the residuals at design points Xˆ ()m x i

Step 3
Learn (or fit) the residuals to the WL

 13

 1ˆ () (,)br x GRNN Xi iε− = (38)
Step 4
Update the estimator
 1 1ˆ ˆ ˆ() () ()b b bm x m x r x− −= + (39)

Step 5
 Go back to step 2 and repeat loop until B, steps.

That is a brief basic description of L2Boost for more details consult recent papers by Di Marzio
and Taylor, (2004) and Buhlmann and Yu, (2003) as well as Friedman, (2001).

Boosting and Hierarchical Training of NPCA-NN (HT of NPCA-NN)

In our previous report, Butuk, (2002) we describe a novel method developed to speed up the
training of NPCA-NN model. The method developed was termed Hierarchical Training of
NPCA-NN (HT of NPCA-NN). At the time of developing HT of NPCA-NN, there appeared to
be no theoretical justification as to why the method worked. This has now changed with the
recent publication of Buhlmann and Yu, (2003) paper. It turns out that HT of NPCA-NN is only
a slightly different implementation of L2Boost. For example the WLs are the networks 5-8-2-8-5,
5-3-2-3-5 and 5-3-2-3-5 as described in that earlier report. Therefore HT of NPCA-NN was the
first attempt to apply a form of L2Boost to standard neural networks. With guidance of new
results, this algorithm will now be easily improved. At that time, it was demonstrated that it
resulted in significant improvement in the convergence of NPCA-NN algorithm.

Results and Discussions

This section of the report presents the numerical experimental results carried out on a test
function. First to be described is the function used as a test function. Next will be described the
implementation of GRNN to estimate the known function from sampled design or grid points.
The GRNN prediction will be compared with known values. The efficiency of GRNN
implementation will be noted and the strategy used to improve this efficiency will be described.
Next to be described is the determination of derivatives of GRNN analytically and via the
Complex Step Method (CSM). CSM will be shown to be fast and superior to the analytic
approach of kernel derivatives. This will be followed by the description of implementation of
the new boosting algorithm that significantly improves the accuracy of GRNN and allows the use
of a single bandwidth that is chosen conservatively to be sub-optimal. Finally different
combinations of results will be presented.

A two dimensional function was chosen as the test function and also to serve as a simulator of
typical 2-dimensional CFD problem. The test function chosen was
 2(,) cos 3 yf x y y x x e= + (40)
The partial first order derivatives of the function are

2

(,) sin 6

(,) cos 3

y
x

y
y

f x y y x xe

f x y x x e

= − +

= +
 (41)

 14

The design points chosen were and [7,7]x∈ − [7,7]y ∈ − .

The implementation of GRNN on the 2-dimensional test function was implemented using the
equation:

2 2

2 2

2 2

2 2

() ()
2 2

,
1 1

() ()
2 2

1 1

(,)

i i

i i

x X y Ym n
h h

i j
j i

x X y Ym n
h h

j i

f e e
f x y

e e

− − − −

= =

− − − −

= =

=
∑∑

∑∑
 (42)

Note that the recommended product kernel was used because the function is two dimensional. As
is evident, our chosen kernel is the normal Gaussian. With regards to the efficiency of
implementation, suppose that we need to evaluate the GRNN at N distinct data points given n
test data. A direct naïve application of (42) would result in O(Nn) operations for the
determination of the estimator at N grid points. Now since the Gaussian kernel used has compact
support roughly at [-4h,4h], significant computer time can be saved by performing the local
averaging within the region of support of the kernel. With this speed up the number of operations
could then be O(Nnh). In all of the results to be presented below, this speedup of GRNN was
implemented.

There are two current approaches of estimating the partial derivatives of GRNN equation (42).
The first method is the finite difference approach, which suffers from subtractive cancellation
errors and is therefore not considered in this report, Anderson, et. al.,(2000). The second
method is the kernel derivatives approach. Here (42) is differentiated directly. To obtain the
partial derivatives with respect to x, let

22

2 2

22

2 2

22

2 2

22

2 2

()()
2 2

,
2

1 1

()()
2 2

1 1

()()
2 2

,
1 1

()()
2 2

2
1 1

()

()

ji

ji

ji

ji

y Yx X
h hm n

i j i

j i

y Yx Xm n
h h

j i

y Yx Xm n
h h

i j
j i

y Yx X
m n h h

i

j i

f x X e e
Ax

h

Bx e e

Cx f e e

x X e eDx
h

−−
− −

= =

−−
− −

= =

−−
− −

= =

−−
− −

= =

−
= −

=

=

−
= −

∑∑

∑∑

∑∑

∑∑

Then

 2(,)
()x

Ax CxDxf x y
Bx Bx

= − (43)

To obtain the partial derivatives with respect to y, let

 15

22

2 2

22

2 2

22

2 2

22

2 2

()()
2 2

,
2

1 1

()()
2 2

1 1

()()
2 2

,
1 1

()()
2 2

2
1 1

()

()

ji

ji

ji

ji

y Yx X
h hm n

i j j

j i

y Yx Xm n
h h

j i

y Yx Xm n
h h

i j
j i

y Yx X
h hm n

j

j i

f e y Y e
Ay

h

By e e

Cy f e e

e y Y e
Dy

h

−−
− −

= =

−−
− −

= =

−−
− −

= =

−−
− −

= =

−
= −

=

=

−
= −

∑∑

∑∑

∑∑

∑∑

Then

 2(,)
()y

Ay CyDyf x y
By By

= − (44)

It is clear from the above that the kernel derivatives method of computing partial derivatives is
complicated and involves up to five summands for each of the partial derivatives. In fact for
higher order derivatives the analytic formulae becomes quite unwieldy because of the ratio form
of GRNN. MSE of the derivatives kernel estimators, indicate that for estimating the rth
derivatives, , is difficult with the MSE of order O(-4/n(2r+5)) resulting in a slower rate of
convergence for higher values of r, Stone (1982). Below are two complete Fortran programs to
compute derivatives of GRNN estimator using the analytic kernel differentiation approach and
the new CSM.

()rm x

Program 1. Fortan Program for GRNN and its 1st order Derivatives Using Kernel Derivatives
Method (equations (42-44) above):

C ***************MAIN PROGRAM ^*************************************
 PROGRAM MULTIVARI
 IMPLICIT REAL (A-H,O-Z)
 PARAMETER (RHO=0.05,NX=500,NY=500,NT=20)
 DIMENSION X(NX),Y(NY),Y1(NX,NY),Y2(NT),YDX(NT),
 +Y3(NT),W(NT),W1(NT),Y4(NT),Y5(NT),YDY(NT),elapsed(2)
C
C COMPLEX VARIABLES
C

 OPEN(UNIT=77,FILE='aout.dat',FORM='FORMATTED',
 & STATUS='unknown')
c
C Generate Random Design Test variables between 0 and 7
c
 IDUM=6
 DO 10 I = 1,NT
 W(I) = RAN0(IDUM)*7
 W1(I) = RAN0(IDUM)*7
 10 CONTINUE

C

 16

C GENERATE DESIGN POINTS
C
 X(1)=-10
 X(NX)=10
 Y(1)=-10
 Y(NY)=10
 DX=(X(NX)-X(1))/FLOAT(NX)
 DY=(Y(NY)-Y(1))/FLOAT(NY)
 DO 13 I=2,NX-1
 X(I)=X(I-1)+DX
 13 CONTINUE
 DO 14 I=2,NY-1
 Y(I)=Y(I-1)+DY
 14 CONTINUE
C
C COMPUTE THE FUNCTIONAL VALUES AT DESIGN POINTS: THIS IS WHERE YOU CHANGE THE
FUNCTION
C MAKE SURE CHOSEN FUNCTION MATCHES WITH (X,Y) DESIGN POINTS ABOVE
C
 DO 15 I = 1,NX
 DO 15 J=1,NY
 Y1(I,J)=Y(J)*COS(X(I))+3*(X(I)**2)*EXP(Y(J))
 15 CONTINUE
C
C NOW ESTIMATE FUNCTION AND ITS DERIVATIVES VIA NATARAY-WATSON SMOOTHER
C

 CALL FUNCF(NX,NY,NT,X,Y,Y1,Y2,W,W1,RHO)
 CALL FUNCDX(NX,NY,NT,X,Y,Y1,YDX,W,W1,RHO)
 CALL FUNCDY(NX,NY,NT,X,Y,Y1,YDY,W,W1,RHO)

C
C OUTPUT RESULTS
C

 WRITE(77,*)'X Y F F-EST F-ERR FDX FDX-ERR FDY FDY-ERR'

 DO 20 K = 1,NT
 Y3(K)=W1(K)*COS(W(K))+3*(W(K)**2)*EXP(W1(K))
 Y4(K)=-W1(K)*SIN(W(K))+6*W(K)*EXP(W1(K))
 Y5(K) = COS(W(K)) + 3*(W(K)**2)*EXP(W1(K))
 err = abs(Y2(K)- Y3(K))
 errx = abs(YDX(K)- Y4(K))
 erry = abs(YDY(K)- Y5(K))

 WRITE(77,1) W(K),W1(K),Y3(K),Y2(K),err,YDX(K),errx,YDY(K),erry
 20 CONTINUE

 1 FORMAT(1X,F10.3,1X,F10.3,1X,F10.3,1X,F10.3,1X,F10.3,1X,F10.3,1X,
 +F10.3,1X,F10.3,1X,7(F10.3,1X))

 total = ETIME(elapsed)
 print *, 'End: total=', total, ' user=', elapsed(1),
 & ' system=', elapsed(2)

 STOP
 END

 SUBROUTINE FUNCF(NX,NY,NT,X,Y,Y1,Y2,W,W1,RHO)
 IMPLICIT REAL (A-H,O-Z)

 17

 DIMENSION X(NX),Y(NY),Y1(NX,NY),Y2(NT),W(NT),W1(NT)
 DO 20 K = 1,NT
 SUM1=0.0
 SUM2=0.0
 DO 30 I= 1,NX
 D1 =(X(I)-W(K))**2
 DO 30 J=1,NY
 D2 =(Y(J)-W1(K))**2
 H =(EXP(-(D1+D2)/(2*(RHO)**2)))
 H1=H*Y1(I,J)
 SUM1=SUM1+H
 SUM2=SUM2+H1
 30 CONTINUE
 Y2(K)= SUM2/SUM1
 20 CONTINUE
 RETURN
 END

 SUBROUTINE FUNCDX(NX,NY,NT,X,Y,Y1,Y2,W,W1,RHO)
 IMPLICIT REAL (A-H,O-Z)
 DIMENSION X(NX),Y(NY),Y1(NX,NY),Y2(NT),W(NT),W1(NT)
 DO 20 K = 1,NT
 SUMN1=0.0
 SUMN2=0.0
 SUMN3=0.0
 SUMD1=0.0
 SUMD2=0.0
 DO 30 I= 1,NX
 D1 =(X(I)-W(K))**2
 DO 30 J=1,NY
 D2 =(Y(J)-W1(K))**2
 HN1=Y1(I,J)*(EXP(-(D1+D2)/(2*(RHO)**2)))*(-(W(K)-X(I))/(RHO)**2)
 HD1=(EXP(-(D1+D2)/(2*(RHO)**2)))
 HD2=(EXP(-(D1+D2)/(2*(RHO)**2)))**2
 HN2=Y1(I,J)*(EXP(-(D1+D2)/(2*(RHO)**2)))
 HN3=(EXP(-(D1+D2)/(2*(RHO)**2)))*(-(W(K)-X(I))/(RHO)**2)
 SUMN1=SUMN1+HN1
 SUMN2=SUMN2+HN2
 SUMN3=SUMN3+HN3
 SUMD1=SUMD1+HD1
 SUMD2=SUMD2+HD2
 30 CONTINUE
 Y2(K)= (SUMN1/SUMD1)-((SUMN2*SUMN3)/SUMD2)
 20 CONTINUE
 RETURN
 END

 SUBROUTINE FUNCDY(NX,NY,NT,X,Y,Y1,Y2,W,W1,RHO)
 IMPLICIT REAL (A-H,O-Z)
 DIMENSION X(NX),Y(NY),Y1(NX,NY),Y2(NT),W(NT),W1(NT)
 DO 20 K = 1,NT
 SUMN1=0.0
 SUMN2=0.0
 SUMN3=0.0
 SUMD1=0.0
 SUMD2=0.0
 DO 30 I= 1,NX
 D1 =(X(I)-W(K))**2
 DO 30 J=1,NY
 D2 =(Y(J)-W1(K))**2
 HN1=Y1(I,J)*(EXP(-(D1+D2)/(2*(RHO)**2)))*(-(W1(K)-Y(J))/(RHO)**2)
 HD1=(EXP(-(D1+D2)/(2*(RHO)**2)))

 18

 HD2=(EXP(-(D1+D2)/(2*(RHO)**2)))**2
 HN2=Y1(I,J)*(EXP(-(D1+D2)/(2*(RHO)**2)))
 HN3=(EXP(-(D1+D2)/(2*(RHO)**2)))*(-(W1(K)-Y(J))/(RHO)**2)
 SUMN1=SUMN1+HN1
 SUMN2=SUMN2+HN2
 SUMN3=SUMN3+HN3
 SUMD1=SUMD1+HD1
 SUMD2=SUMD2+HD2
 30 CONTINUE
 Y2(K)= (SUMN1/SUMD1)-((SUMN2*SUMN3)/SUMD2)
 20 CONTINUE
 RETURN
 END

C **********RAMDOM NUMBER GENERATOR**********************
 FUNCTION RAN0(IDUM)
 IMPLICIT REAL (A-H,O-Z)
 PARAMETER(IA=16807,IM=2147483647,AM=1./IM,
 + IQ=127773,IR=2836,MASK=123459876)

 IDUM=IEOR(IDUM,MASK)
 K=IDUM/IQ
 IDUM=IA*(IDUM-K*IQ)-IR*K
 IF(IDUM.LT.0)IDUM=IDUM+IM
 RAN0=(AM*IDUM)
 IDUM=IEOR(IDUM,MASK)
 RETURN
 END

Program 2. Fortan Program for GRNN and its 1st order Derivatives Using Complex Step Method
(CSM):

C ***************MAIN PROGRAM ^*************************************
 PROGRAM COMPMULTI
 IMPLICIT REAL (A-H,O-Z)
 PARAMETER (RHO=0.05,NX=500,NY=500,NT=20,H=0.01)
 DIMENSION X(NX),Y(NY),Y1(NX,NY),Y2(NT),
 +Y3(NT),W(NT),W1(NT),Y4(NT),Y5(NT),CYDX(NT),CYDY(NT),elapsed(2)
C
C COMPLEX VARIABLES
C
 COMPLEX*8 CX(NX),CY(NY),CY1(NX,NY),CY2(NT),CW(NT),CW1(NT)
 + ,CRHO,TEMP,HX

 OPEN(UNIT=77,FILE='aout.dat',FORM='FORMATTED',
 & STATUS='unknown')
c
C Generate Random Design Test variables between 0 and 7
c
 IDUM=6
 DO 10 I = 1,NT
 W(I) = RAN0(IDUM)*7
 W1(I) = RAN0(IDUM)*7
 10 CONTINUE

C
C GENERATE DESIGN POINTS
C
 X(1)=-10
 X(NX)=10

 19

 Y(1)=-10
 Y(NY)=10
 DX=(X(NX)-X(1))/FLOAT(NX-1)
 DY=(Y(NY)-Y(1))/FLOAT(NY-1)
 DO 13 I=2,NX-1
 X(I)=X(I-1)+DX
 13 CONTINUE
 DO 14 I=2,NY-1
 Y(I)=Y(I-1)+DY
 14 CONTINUE
C
C COMPUTE THE FUNCTIONAL VALUES AT DESIGN POINTS: THIS IS WHERE YOU CHANGE THE
FUNCTION
C MAKE SURE CHOSEN FUNCTION MATCHES WITH (X,Y) DESIGN POINTS ABOVE
C
 DO 15 I = 1,NX
 DO 15 J=1,NY
 Y1(I,J)=Y(J)*COS(X(I))+3*(X(I)**2)*EXP(Y(J))
 15 CONTINUE

C
C NEXT IS TO COMPUTE COMPLEX DERIVATIVES CDX AND CDY CONVERT SUBROUTINE FUNCF TO
COMPLEX CFUNCF
C
 HX= CMPLX(H)
 DO 25 I = 1,NX
 DO 25 J=1,NY
 CY1(I,J)=CMPLX(Y1(I,J))
 25 CONTINUE
 DO 26 I=1,NX
 CX(I)=CMPLX(X(I))
 26 CONTINUE
 DO 27 I=1,NY
 CY(I)=CMPLX(Y(I))
 27 CONTINUE
 DO 28 I=1,NT
 CW(I)=CMPLX(W(I))
 CW1(I)=CMPLX(W1(I))
 28 CONTINUE
 CRHO = CMPLX(RHO)
C DX DERIVATIVES
 CALL CFUNCDX(NX,NY,NT,CX,CY,CY1,CY2,CW,CW1,CRHO,HX)
 DO 29 J=1,NT
 CYDX(J)=AIMAG(CY2(J))/H
 Y2(J) = REAL(CY2(J))
 29 CONTINUE
C DY DERIVATIVES
 CALL CFUNCDY(NX,NY,NT,CX,CY,CY1,CY2,CW,CW1,CRHO,HX)
 DO 30 J=1,NT
 CYDY(J)=AIMAG(CY2(J))/H
 30 CONTINUE

C
C OUTPUT RESULTS
C

 WRITE(77,*)'X Y F F-EST F-ERR CDX CERRX CDY CERRY'

 DO 20 K = 1,NT
 Y3(K)=W1(K)*COS(W(K))+3*(W(K)**2)*EXP(W1(K))
 Y4(K)=-W1(K)*SIN(W(K))+6*W(K)*EXP(W1(K))
 Y5(K) = COS(W(K)) + 3*(W(K)**2)*EXP(W1(K))

 20

 err = abs(Y2(K)- Y3(K))
 cerrx = abs(CYDX(K)- Y4(K))
 cerry = abs(CYDY(K)- Y5(K))

 WRITE(77,1) W(K),W1(K),Y3(K),Y2(K),err,CYDX(K),cerrx,CYDY(K),cerry
 20 CONTINUE

 1 FORMAT(1X,F10.3,1X,F10.3,1X,F10.3,1X,F10.3,1X,F10.3,1X,F10.3,1X,
 +F10.3,1X,F10.3,1X,7(F10.3,1X))

 total = ETIME(elapsed)
 print *, 'End: total=', total, ' user=', elapsed(1),
 & ' system=', elapsed(2)

 STOP
 END

 SUBROUTINE CFUNCDX(NX,NY,NT,X,Y,Y1,Y2,W,W1,RHO,HH)
 IMPLICIT COMPLEX*8 (A-H,O-Z), INTEGER(I-N)
 DIMENSION X(NX),Y(NY),Y1(NX,NY),Y2(NT),W(NT),W1(NT)
 DO 20 K = 1,NT
 TEMP=W(K)
 W(K)=CMPLX(REAL(W(K)),REAL(HH))
 SUM1=0.0
 SUM2=0.0
 DO 30 I= 1,NX
 D1 =(X(I)-W(K))**2
 DO 30 J=1,NY
 D2 =(Y(J)-W1(K))**2
 H =(CEXP(-(D1+D2)/(2*(RHO)**2)))
 H1=H*Y1(I,J)
 SUM1=SUM1+H
 SUM2=SUM2+H1
 30 CONTINUE
 Y2(K)= SUM2/SUM1
 W(K)=TEMP
 20 CONTINUE
 RETURN
 END

 SUBROUTINE CFUNCDY(NX,NY,NT,X,Y,Y1,Y2,W,W1,RHO,HH)
 IMPLICIT COMPLEX*8 (A-H,O-Z), INTEGER(I-N)
 DIMENSION X(NX),Y(NY),Y1(NX,NY),Y2(NT),W(NT),W1(NT)
 DO 20 K = 1,NT
 TEMP=W1(K)
 W1(K)=CMPLX(REAL(W1(K)),REAL(HH))
 SUM1=0.0
 SUM2=0.0
 DO 30 I= 1,NX
 D1 =(X(I)-W(K))**2
 DO 30 J=1,NY
 D2 =(Y(J)-W1(K))**2
 H =(CEXP(-(D1+D2)/(2*(RHO)**2)))
 H1=H*Y1(I,J)
 SUM1=SUM1+H
 SUM2=SUM2+H1
 30 CONTINUE
 Y2(K)= SUM2/SUM1
 W1(K)=TEMP
 20 CONTINUE
 RETURN
 END

 21

The above two programs to compute 20 function values and their partial derivatives using the
kernel derivatives method and the complex step method were timed using the Fortran timing
function “etime”. The results for the CSM method was 9.073sec and the kernel derivatives
method took 36.893sec. The speedup using the CSM method is therefore superior by about a
factor of 4. The grid mesh was 500x500 and a bandwidth of 0.05 was used for both methods.

Next to report is the results of applying the novel L2Boost algorithm described above to GRNN.
First following the recommendations above a crude GRNN was chosen. Application of the
L2Boost algorithm turned the crude GRNN into an accurate estimator in only a few B-steps (5
steps). Direct implementation of GRNN using the above test function required an h value of 0.05
and a 500 x 500 grid size in order to reduce the relative error of function approximation to less
than 1%. Note that in kernel function approximation, the higher the dimension the more data
points are required to achieve a desired accuracy. This is due to the so called “curse of
dimensionality” inherent in many kernel based estimators. Now with L2Boosting, we were able
to obtain similar accuracy using only 50 x 50 grid points and a larger h value of 0.5. Only 5
boosting steps were required. This shows that L2Boost is a simple approach to raise the
consistency (or order) of approximation of an estimator. L2Boosting may also address the curse
of dimensionality for higher dimensional data as shown by the reduced number of grid points
required for a desired accuracy. With respect to a choice of a bandwidth, h, boosting makes its
choice robust as the results no longer depend on it. This is as long as the initial choice which is
kept constant is chosen so as to make the variance of the MSE of the estimator low. For the
GRNN case, this means that h should be chosen to be larger than the optimal value obtained via
analysis of MSE. This L2Boosted GRNN maybe comparable in efficiency but superior in
simplicity to the modified GRNN reported in; Krysl and Belytschko (2000). The modified
GRNN reported therein is in fact closely related to the popular Local Polynomial Kernel
Estimators (LPKE), using a local linear model, Wand and Jones (1995). However, in that paper
there is no mention of how the bandwidth was determined since its determination can be costly
computationally.

Figure 1 shows the exact functional values of the test function, (40). The exponential nature of
the function is evident in this figure. Functional values range from less than 1 to over 150,000. In
order to compare the performance of GRNN of the test function on various estimates, we define
the relative error as follows

 Re True Estimatelative Error
True
−

 = (45)

With this definition of relative error, Figure 2 compares the relative error of GRNN estimates of
the test function using the L2Boost algorithm and the unboosted GRNN. The figure shows
estimates for 25 equally spaced (x,y) points. It is clear from the figure that the boosting algorithm
significantly improves the accuracy of the function estimates. The largest errors of the L2Boost
algorithm are at the boundaries. This, as expected is due to the boundary effects, which makes
the bias of the GRNN to be largest at the boundary. It can be shown that without accounting for
the boundary effects, the bias for our estimate is O(h) instead of O(hˆ ()m x 2) at boundary points.
This means that for [][0,) (,]x h a h a∈ ∪ − where 0 is the left boundary and a the right boundary,

 22

the performance of GRNN is not consistent. This inconsistency can easily be corrected, however,
this has not been done in this report.

There are two basic approaches for accounting for boundary effects; the first approach is to use
specially constructed kernels, that are constructed so that the bias is a order O(h2) for all x > 0.
Zhang and Karunamuni, (2000). The other approach for correcting for boundary effects, is to use
the new approach of R-Functions, Rvachev and Sheiko (1995). This is an elegant approach that
will be adopted in this work.

Figures 3 and 4 shows the comparison of actual partial derivatives of the test function with the
respect to x and y respectively. The errors of the partial derivatives with respect to x are larger
especially at the boundaries. We believe that these errors can be significantly reduced once the
kernel boundary effects are taken into account.

Figures 5 to 10 shows coutour plots of percentage relative errors for boosted and unboosted
estimates of the test function and its first partial derivatives. These figures are meant to highlight
the significant accuracy obtained by the new L2Boost algorithm via the combination of GRNN
and CSM. Figure 5 is the coutour plot of unboosted function estimate. Figure 6 is for the
L2Boosted function estimate. The improvement in the estimate is quite significant. This was
done with a fixed bandwidth, h, without the need of the usual time-consuming optimization
algorithms to choose the best bandwidth parameter. Finally Figures 7-10 shows the significant
reduction in relative errors for both the partial derivatives estimates of the test function ∂f/∂x and
∂f/∂y.

Conclusions and Recommendations

A detailed mathematical theory of the Generalized Regression Neural Network (GRNN) function
approximator has been presented. GRNN has a fast training time than traditional Neural
Networks (NN). It has been shown that GRNN can be combined with L2Boost algorithm to
significantly improve its accuracy in a few B-boosting steps. It has also been demonstrated that
GRNN can be combined with the new Complex Step Method (CSM) to obtain accurate 1st order
derivatives. As far as the objectives of this research is concerned the following recommendations
can be made

1. The L2Boost algorithm will be used to improve the Hierarchical Training of NPCA-NN
(HT of NPCA-NN) algorithm developed for chemical mechanism data. Note that HT of
NPCA-NN was the first attempt to apply a form of L2Boost to NN.

2. Due to the extremely high dimensions of chemical mechanism data, GRNN cannot be
used to replace NPCA-NN despite its fast training characteristic.

3. GRNN is only good for data of dimensions 3 or less, such as CFD. Our hope for studying
GRNN was to take advantage of its fast training attributes and design it as NPCA-NN.
However due to the “curse of dimensionality” it will be inefficient if implemented as
NPCA-NN. It best use, however is in mesh free CFD which will be an interesting
application with a high pay off.

4. GRNN combined with CSM and L2Boost will be a novel and efficient approach for mesh
free CFD. This is the approach we will follow to develop our in-house 2-dimensional
CFD solver to test the NPCA-NN model that has been successfully demonstrated. The

 23

previously reported 2-dimensional Euler solver will be extended to include reactive flow
equations implemented via the mesh free GRNN. Note that current CFD solvers
experience convergence difficulties when solving reactive flows. This is usually
attributed to two main causes; the stiffness of the partial differential equations of reactive
flows, and the quality of the mesh. If the solver can be made mesh free, then the second
cause can be eliminated and better convergence of the solvers obtained. When coupling
NPCA-NN to CFD, therefore, it will be advantageous to couple it to a mesh free solver.

5. Recent publication of paper by Buhlmann and Yu, (2003) has given credibility and basic
theory to the HT of NPCA-NN algorithm developed in our earlier work.

References

Anderson, W.K., Newman III, J.C., Whitfield, D.L., and Nielsen, E.J., 2000, “Sensitivity
Analysis for the Navier-Stokes equations on Unstructured Meshes Using Complex Variables,”
AIAA Journal, Vol. 39, No. 1, pp 56-63

Buhlmann, P., and Yu, B., 2003, “Boosting with the L2 Loss: Regression and Classification,”
Journal of the American Statistical Association, Vol. 98, pp 324-339

Butuk, N.K., 2002, Mathematically Reduced Chemical Reaction Mechanism of DME Using
Neural Networks, Final Report US Department of Energy Grant Number: DE-FG26-00NT-
40830

Di Marzio, M., and Taylor, C.C.,2004, “Boosting Kernel Density Estimates: a bias reduction
technique,” Biometrika , Vol.91, pp 226-233

Friedman, J., 2001, “Greedy Function Approximation: a gradient boosting machine,” The Annals
of Statistics, Vol. 29, pp 1189-1232

Hardle, W.,1990, Applied Nonparametric Regression. Cambridge University Press, Cambridge

Hastie, T., Tibshirani, R., and Friedman, J., 2001, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, New York.

Higgins, J.J, and Keller-McNulty, S., 1995, Concepts in Probability and Stochastic Modeling.
Duxbury Press, New York.

Krysl, P., and Belytschko, T., 2000, “An Efficient Linear-Precision Partition of Unity Basis for
Unstructured Meshless Methods,” Communications in Numerical Methods in Engineering, Vol.
16, pp 239-255

Liu, G.R., 2003, Mesh Free Methods: Moving beyond the Finite Element Method. CRC Press,
New York.

 24

Mustafi,C.K.,1978, “On the Asymptotic Distribution of the Estimates of the Derivatives of a
Distribution Function,” SIAM Journal on Applied Mathematics, Vol. 34, pp 73-77

Nadaraya, E.A.,1964, “On Estimating Regression,” Theory of Probably and its Applications. 10,
pp 186-90.

Onate, E., Idelsohn, S., Zienkiewic, O. C., Taylor, R.L., and Sacco, C., 1996, “A stabilized Finite
Point Method for Analysis of Fluid Mechanics Problems,” Computer Methods In Applied
Mechanics and Engineering, Vol. 139, pp 315-346

Parzen, E.,1962, “On Estimation of a Probability Density Function and Mode,” The Annals of
Mathematical Statistics, Vol.33,No.3, pp 1065-76

Rvachev, V.L., and Sheiko, T.I., 1995, “R-Functions in Boundary Value Problems in
Mechanics,” Applied Mechanics Review, Vol. 48, No. 4, pp 151-188

Schuster, E.F.,1969, “Estimation of a Probability Density Function and Its Derivatives,” Annals
of Mathematical Statistics, Vol. 40, pp 1187-95

Scott, D.W.,1992, Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley,
New York.

Smith, D.M.,1998, “Multiple Precision Complex Arithmetic and Functions,” ACM Transactions
on Mathematical Software, Vol.24, pp 359-367

Stone, C.J., 1982, “Optimal Global Rates of Convergence for Nonparametric Regression,” The
Annals of Statistics, Vol. 10, No. 4, pp 1040-1053

Wand, M.P., and Jones, M.C., 1995, Kernel Smoothing. Chapman and Hall, New York.

Watson, G.S.,1964, “Smooth Regression Analysis,” Sankhya, Series A, 26, pp 359-372.

Zhang, S., and Karunamuni, R.J., 2000, “On Nonparametric Density Estimation at the
Boundary,” Nonparametric Statistics, Vol. 12, pp 197-221

 25

Figure 1. Exact Function Values of Equation (40).

Figure 2: Comparison of L2Boost and UnBoosted GRNN estimates of Test Function.

 26

Figure 3: Comparison of Partial Derivatives, df/dx. Estimated vs. Actual

Figure 4: Comparison of Partials Derivatives, df/dy. Estimated vs. Actual.

 27

Figure 5: Percentage Relative Errors of UnBoosted Function Estimated.

Figure 6: Percentage Relative Errors of L2Boosted Test Function Estimate

 28

Figure 7: Percentage Relative Errors of UnBoosted Partial Derivatives, df/dx, Estimate

Figure 8: Percentage Relative Errors of L2Boosted Partial Derivatives, df/dx, of Test Function.

 29

Figure 9: Percentage Relative Errors of UnBoosted Partial Derivatives, df/dy, Estimate

Figure 10: Percentage Relative Errors of L2Boosted Partial Derivatives, df/dy, of Test Function.

 30

	Technical Progress Report
	Period ending: 09/30/2005
	DOE Grant Number: DE-FG26-03NT-41913
	Office of Sponsored Programs

	Abstract
	Introduction
	Basic Theory of GRNN

	Complex Variables Method of Derivatives (CSM)
	Boosting
	Here is described, a new novel algorithm for raising the ord
	Thus, the basic requirements of boosting is a WL and a metho
	Results and Discussions
	Next to report is the results of applying the novel L2Boost
	Conclusions and Recommendations
	References

