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Abstract 
This  is an annual technical report for the work done over the last  year (period ending 

9/30/2005) on the project titled  “Mathematically Reduced Chemical Reaction Mechanism  
Using Neural Networks.” The aim of the project is to develop an efficient chemistry model for 
combustion simulations. The reduced chemistry model will be developed mathematically 
without the need of having extensive knowledge of the chemistry involved. To aid in the 
development of the model, Neural Networks (NN) will be used via a new network topology 
know as Non-linear Principal Components Analysis (NPCA).   
 We report on  the development of a novel procedure  to speed up the training of NPCA. 
The same procedure termed L2Boost can be used to increase the order of approximation of the  
Generalized Regression Neural Network (GRNN). It is pointed out that GRNN is a basic 
procedure for the emerging mesh free CFD. Also reported is an efficient simple approach of 
computing the derivatives of GRNN function approximation using complex variables or the 
Complex Step Method (CSM). The results presented demonstrate the significance of the methods 
developed and will be useful in many areas of applied science and engineering.  
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Introduction 

This  is an annual technical report for the work done over the last  year (period ending 
9/30/2005) on the project titled  “Mathematically Reduced Chemical Reaction Mechanism  
Using Neural Networks.” The aim of the project is to develop an efficient chemistry model for 
combustion simulations. The reduced chemistry model will be developed mathematically 
without the need of having extensive knowledge of the chemistry involved. To aid in the 
development of the model, Neural Networks (NN) will be used via a new network topology 
know as Non-linear Principal Components Analysis (NPCA).   
 Many Combustion systems are modeled by   very high-dimensional systems of non-linear 
differential equations. These equations often exhibit solutions which are un-evenly distributed in 
phase-space, and which may exist as circles, tori or other manifolds. It is desirable to 
approximate these isolated regions of the phase-space by a mathematical model of lower 
dimension than the dimension of the original ambient space. We propose to develop NPCA  to 
accomplish this task using NN. 
Given a data set X ∈ Rn NPCA determines a reduction mapping 
    G: X →Y 
where the set Y ∈  Rm  has reduced dimension m < n. Y is then said to be a reduction of X. The 
inverse mapping reproduces the original data X from the reduced data set Y as  
    H: Y → X 
Hence, NPCA is a composition of mappings which is the same as the identity mapping, i.e.  
    H o G: X  → X 
 
 The NPCA is a NN topology with five layers, in which the input layer has the same 
number of nodes as the output layer. This allows the input values to be used as target output 
values of the network during training. The first part of the network approximates the mapping G. 
It contains the mapping layer. The middle layer is the bottle-neck layer consisting of the m nodes 
(i.e. desired reduced dimension m). The last part of the network implements the mapping H and 
contains the de-mapping layer. This layer takes  the output of the middle layer and maps it onto   
the output layer. It is on the bottle-neck layer, that the reduced manifold of the chemistry is 
reconstructed. 
 The Objectives of this research are therefore: 
1. Improve the training rate of the NPCA-NN algorithm developed previously. 
2. Develop a method to determine optimum trajectory data of reaction mechanisms needed to 

use NPCA-NN. 
3. Apply the NPCA-NN algorithm to the reduction of Dimethyl ether (DME) mechanism. 
4. Couple the developed NPCA-NN model to the KIVA  CFD code. 
5. Test the  CFD code on a few other simple sample mechanisms 
6. Student Education in Computational Applied Mathematics 
 
 
During the past  year, we have spent considerable amount of time developing a detailed 
understanding of the mathematical theory of function approximators (or estimators). The various 
techniques developed for function approximation are all grounded in well developed 
mathematical procedures, which if well understood will guide in the development of new 
consistent application methods. Because of this main reason, we have reviewed the basic theory 
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underlying most  function estimators. As a result of this review this report presents significant 
new results that will aid in the overall long term objectives of this work. An approach to improve 
the training speed of NPCA-NN will be described as well as recent published theoretical results 
to support the method. Also to be described is a new mesh free approach to modify our in-house 
developed CFD code  in partial fulfillment of objective 4. The approach to be described, we 
believe will have significant impact to the emerging field of mesh free CFD.  First to be 
described is some mathematical theory of function estimators.  
 
In general, function estimators can be classified as being parametric or nonparametric. Most 
modern approaches, that include Neural Networks (NNs), the subject of this work fall under the 
category of nonparametric methods. Within the nonparametric category, we also classify 
methods according to the approach used in constructing the estimator. These include methods 
based on; (i) local averaging (ii) local modeling, and (iii) global modeling or least squares 
estimation. Examples of local averaging methods include; K-nearest neighbor (K-NN), 
Generalized Regression Neural Network (GRNN) also known as Nadaraya Watson (NW) 
estimator, and the partitioning estimator, as well as several kernel based estimators, Hastie et al. 
(2001). These methods fit a constant locally to the data hence the term “local averaging”. In 
methods based on  local modeling, instead of fitting a constant to the data, a more general 
function is fitted locally to the data. Examples of this approach include; local polynomial kernel 
estimators and the popular  Moving Least Squares (MLS) estimator, used in emerging meshfree 
CFD,  Liu (2003). Finaly, in the global modeling approach, data are fitted globally. Example 
methods include; orthogonal series estimators, cubic spline smoothers, and neural networks, the 
approach of this research. Wavelets are also classified under this category. 
 
In our research to develop efficient neutral network based chemical reaction mechanism, 
reduction model, NPCA-NN, we have sought to develop a model that will incorporate some of 
the desirable properties of GRNN into the NPCA-NN model. In order to be able to do this, we 
have focused our study of the theory of function approximation on the GRNN. Below will be 
presented a summary of this theory, which will allow us to point out some of the characteristics 
of the estimator. As part of a masters thesis supported by this research, we have successfully 
demonstrated  a new approach of estimating the derivatives of the GRNN approximated function. 
This new approach uses the Complex Step Method (CSM) to be described below, to compute 
accurate derivatives  of the approximated function. This technique was demonstrated using the 
GRNN estimator, however, the approach is applicable to any of the nonparametric estimators 
mentioned above. Derivatives approximation is an important part of this research as they will be 
required in the coupling of  developed NPCA-NN model to CFD, the 4th  objective of this 
research. 
 
Compared to the traditional approaches of computing numerical derivatives using finite 
differencing or kernel differentiation, Mustafi (1978) and Schuster (1969), we show that the 
CSM approach is faster and much simpler to implement.   Demonstrated also is a simple and fast 
boosting  technique for GRNN that significantly improves the accuracy of first order derivatives. 
It is shown that this boosting is necessary because one of the arguments against GRNN is its 
“low order” of consistency. Consistency is one way of comparing estimators. The accuracy or 
desirability of an estimator can be based on the highest order polynomial that the estimator can 
represent “exactly”. An estimator is then said to be consistent to order n, if n is the highest order 
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polynomial it can represent exactly. Because the GRNN  fits a constant to data, it is of 0-order  
consistency. This has been the main argument used against the use of GRNN as an estimator, 
despite it being of low computational cost and simplicity of implementation. It is shown that with 
boosting this arguments is no longer valid and when combined with CSM makes GRNN 
attractive  not only for this work but  many application areas of science and engineering. For 
example   the new emerging field of mesh free CFD and  nano-computing.  
 
In this report it is demonstrated  the “boosting” of GRNN to increase its consistency and we also 
show that the CSM is superior to the traditional robust approach of kernel differentiation to 
obtain derivatives of approximated functions. It is considered that this successful demonstration 
of the superior advantages of computing the derivatives of GRNN  using CSM is  significant 
development resulting from this research.  In CFD, GRNN is a basic method for the emerging 
mesh free methods, Liu (2003). One argument against these mesh free methods is the difficulty 
and time consuming approaches of computing derivatives necessary to solve the Navier-Stokes 
equations of fluid flow. In fact it is often necessary to introduce approximation methods of 
computing derivatives (due to the complexity of analytic differentiation methods) as is done in 
Onate, et al. (1996).  By successfully demonstrating an efficient accurate approach of computing 
derivatives of GRNN, a solution for the major argument against mesh free methods will begin to 
emerge. For this reason, the new algorithm (that combines “boosting” and CSM) to be fully 
presented in the results section of this report, may be subject to Intellectual  Property Protection 
(IPP), prior to public release. 
 
The rest of this report is organized as follows; first we present a summary of the basic 
mathematical theory of GRNN and related kernel based methods. Next will be described a 
simple recently introduced booting technique to improve the consistency of GRNN. The 
relationship of this boosting technique to the hierarchical training of NPCA-NN (HT of NPCA-
NN), 1st objective above will be pointed out. The approach of CSM will be given a brief 
summary. Methods of improving the computational efficiency of GRNN will be described as the 
report evolves. Finally, the main results of this work will be presented. 
 
Basic Theory of GRNN  
 
The presentation below can be found in many statistical books including Scott (1992) and Wand 
and Jones (1995). We have tried to present a simplified explanation of mathematical derivations 
and or proofs   that should be accessible to many audiences across different  fields.  
 
In function approximation one considers a data vector (X,Y), where X is ℜd 

 - valued and maybe 
fixed deterministic set of points or random set of points. This will result in what is popularly 
referred to as a fixed design model or a random design model. Y is random and ℜ -valued. Our 
interest is to specify a relationship between the dependent variable Y, and the independent 
variables X. That is we need to find a measurable function m: ℜd → ℜ, such that m(X) is a 
“good approximation of Y” in some sense. We usually require that the L2  risk or mean squared 
error of m  
 2

2 ( )L E m X Y⎡ ⎤= −⎣ ⎦  (1) 
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be as small as possible. The symbol E[u] is known as the expectation of u, Higgins and Keller-
McNulty (1995). The expectation of a continuous variable u with density f(u) is  
 [ ] ( )E u uf u du= ∫  (2) 
So our interest is to minimize the expectation of the squared distance between m(X) and Y. For a 
given data point (or instance of data) (x,y) our model  becomes  
 ( )y m x ε= +  (3) 
where ε denotes an iid independent realizations of a random variable (error) with mean 0 and 
variance σ2. Note that our data samples consists of n-pairs of observations {(X1,Y1)…(Xn,Yn)}. 
In this report we will interchangeably use subscripted upper case variables (Xi,Yi) or just lower 
case variables  (x,y) to refer to a single observation from the set of available data points (X,Y). 
The sampled data points are drawn from a population with a joint probability density function 
(pdf), f(x,y), whose form is unknown. In order to estimate this joint pdf, we need to be able to 
estimate the univariate pdf, f(x) of the independent variables X. The details of derivation of an 
estimate of f(x) from data follows. 
 
In estimating f(x), we shall follow the approach first introduced by Parzen (1962). At a point x 
we want to be able to use local information as much as possible to estimate f. One simple 
classical estimator for f is the histogram. However, with the histogram, the estimated function is 
not smooth and it also has jumps which gives the estimation of f a step wise nature. Parzen 
addressed this issue by introducing a real positive kernel function K(u) to specify the way the 
local information is averaged by weighting. Where now the kernel function specifies the weights. 
The general kernel density estimator at a point x is 

 
1

1ˆ ( )
n

i

i

x Xf x K
nh h=

−⎛= ⎜
⎝ ⎠

∑ ⎞
⎟  (4) 

where, h is termed the bandwidth of the kernel. A kernel function assigns weights to the 
contribution given by each data point, Xi  to the kernel density estimator, depending on the 
proximity of  Xi  to x. Typically kernel functions are positive everywhere and symmetric about 
zero. K is usually a density such as the normal pdf. If  f is multivariate and of dimension p, i.e. x 
= (x1 … xp), Xi = (Xi1 .. Xip), then a so called “product kernel” is used and the density estimate 
for f is now 

 
1 1

1 1ˆ ( )
pn

j ij

i j j j

x X
f x K

n h h= =

⎛ ⎞−
= ⎜⎜

⎝ ⎠
∑∏ ⎟⎟  (5) 

 
We will now continue our derivation of the function estimator,  of our data (X,Y). If we 
consider a single observation of the data, the conditional mean is  

ˆ ( )m x

 ( )E Y X x m x⎡ = ⎤ =⎣ ⎦  (6) 
and the conditional variance 
 ( ) 2 ( )Var Y X x xσ= =  (7) 
In order  to simply analysis, as states above, we will assume that the variance is constant 

2 ( )x 2σ σ= . From the basic definition of conditional expectation: 
 [ ]| (Y X x y f y x dxΕ = = | )∫  
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( , )

( , )

yf x y dy

f x y dy
= ∫

∫
 (8) 

  
As discussed above, we can now use a product kernel to approximate ( , )f x y  the joint pdf. 

 
1

1ˆ ( , )
n

i

ix y x y

ix X y Yf x y K K
nh h h h=

⎛ ⎞⎛ ⎞− −
= ⎜⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠

∑ ⎟⎟  (9) 

From the definition of marginal density,  
 ( ) ( , )f s f s t= dt∫  (10) 
The denominator of (8) becomes  

 ( )
1

1ˆ ( , )
n

ii

ix y x y

y Yx Xf x y dy K K dy
nh h h h=

−⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑∫ ∫  (11) 

At this point it is convenient to introduce a scaled Kernel  ( )hK x

 1( )h
xK x K

h h
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (12) 

An intuitive interpretation of this  scaling, is that if K(x) is the density of some random variable 
z, then Kn(x) is the density of the scaled random variable hz, that is, h is the scaling parameter. In 
particular, if K(x) is the standard normal density (as used in this work) then h plays the role of 
the standard deviation. With this scaling we can now write. 
 

     
1

1ˆ ( , ) ( ) ( )
x y

n

h i h
i

if x y K x X K y Y
n =

= − −∑         (13) 

Using the general definition of marginal density, equation (10) above, of variable X,  it can be 
easily shown that  the denominator of  (8) reduces to the marginal density of x 
 

    1ˆ ( , ) ( ) ( )
x y

n

h i h i
i i

f x y dy K x X K y Y dy
n =

= − −∑∫ ∫  

             

           
1

1 (
x

n

h
i

K x X
n =

= ∑ )i−  (14) 

 
Here we have used one of the properties of the Kernel  
      ( ) 1

h
K t dt =∫           (15) 

Also it is required that 
      ( )htK t dt 0=∫           (16) 
Implying an order-2 Kernel. A Kernel is classified as belonging to a certain order, if it satisfies 
certain moment conditions,  Hardle (1990). Using  (16) and letting t=y-yi, it can be shown that   
      ( )h iyK y Y dy Yi− =∫         (17) 
therefore, the numerator of (8) is  
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1

1ˆ ( , ) ( )
x

n

i h i
i

yf x y dy Y K x X
n =

= −∑∫  

Our final function approximator becomes 

      1

1

( )
ˆ ( )

( )

x

x

n

i h i
i

n

h i
i

Y K x X
m x

K x X

=

=

−
=

−

∑

∑
         (18) 

This is the GRNN, as we have reported without detailed derivations in our past reports. In 
statistics literature this approximator is also known as Nadaraya Watson Kernel Regression 
estimator, Nadaraya, (1964) and Watson, (1964). 
 
Our next question to consider is how good an estimator is GRNN?. To answer this question we 
have to determine the mean squared error (MSE) or the L2-norm mentioned above (1). To do 
this, our first step is to decompose the MSE into the so called “Bias-Variance Decomposition”. 
We now describe how this is done. In classical parametric estimation, it is customary to measure 
the performance of an estimator, θ̂ , in comparison to the true value, θ , by the mean square error 
(MSE). 
 2ˆ ˆ( ) [( ) ]MSE Eθ θ θ= −  
If we subtract E[θ̂ ] and add  E[θ̂ ] to the term in parenthesis 
 2ˆ ˆ ˆ ˆ( ) ( ( ) ( ) )MSE E E Eθ θ θ θ θ⎡ ⎤= − + −⎣ ⎦  

Now let µ =  E[θ̂ ] 
    2ˆ ˆ( ) ( )MSE Eθ θ µ µ θ⎡ ⎤= − + −⎣ ⎦

 
                                       2 2ˆ ˆ( ) 2( )( ) ( )E θ µ θ µ µ θ µ θ⎡ ⎤= − + − − + +⎣ ⎦  

Term by term expectation results in the middle term being zero 
               2 2ˆ( ) ( )E θ µ µ θ⎡ ⎤= − + +⎣ ⎦  

The first term inside the brackets is a random variable with mean zero and the second term is a 
constant. From definition, Higgins  and Keller-McNulty (1995), 
  
            2 2 2( )E c z c E z⎡ ⎤ ⎡+ = + ⎤⎣ ⎦ ⎣ ⎦  
where c is a constant and z is a random variable with zero mean and finite variance. Therefore    
 2 2ˆ ˆ( ) ( ) ( )MSE Eθ µ θ θ µ⎡ ⎤= + + −⎣ ⎦  

replacing µ 
         2 2ˆ ˆ ˆ ˆ( ) ( [ ] ) ( [ ])MSE E E Eθ θ θ θ θ⎡ ⎤= + + −⎣ ⎦  

finally 
 2ˆ ˆ( ) ( ) ( )ˆMSE Bias Varθ θ= + θ  (19) 
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This is the decomposition of MSE into variance and squared bias. This result tells us that in order 
to analyze a given estimator, via the MSE criteria, all that we need to do is to compute the 
expected mean and variance of the estimator. This will be done for the GRNN next. 
 
First define two  functionals S and R 
       
 2( ) ( )S g z g z dz= ∫  

 2( ) ( )R g g z d= z∫  (20) 
recall that the GRNN equation above can be written as  

 
ˆ( )ˆ ( ) ˆ ( )
r xm x
f x

=  (21) 

In order to compute the expectation and variance of , we will need to compute the values 
for  and 

ˆ ( )m x
ˆ( )r x ˆ ( )f x  separately. These derivations are long and tedious. Here in this report we will 

present only the results and will describe detail derivations in a follow-up report. First the values 
for ˆ ( )f x  are  

 
2( )ˆ ( ) ( ) ( )

2
f x hE f x f x S K
′′⎡ ⎤ +⎣ ⎦   

 

 ( ) ( ) ( )ˆ ( ) R K f xVar f x
nh

 (22) 

 
 
The values for  are  ˆ( )r x

 [ ] 2 1 1ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

E r x f x m x h S K f x m x f x m x m x f x⎡ ⎤′ ′ ′′ ′′+ + +⎢ ⎥⎣ ⎦
 

 ( ) 2 2( ) ( )ˆ( ) [ ( )]R K f xVar r x m x
nh

σ +  (23) 

 
where σ2 is the variance in (3). Combining (22) and (23) to obtain values for  is also more 
involved since you now have a ratio of two random variables. The final results are:  

ˆ ( )m x

 [ ] 21 (ˆ ( ) ( ) ( ) ( ) 2 ( )
2 (

)
)

f xE m x m x h S K m x m x
f x
′⎡ ⎤′′ ′+ +⎢ ⎥

⎣ ⎦
 

 ( )
2 ( )ˆ ( )

( )
R KVar m x

nhf x
σ  (24) 

The MSE( ) can now be written in the form of (19) as  ˆ ( )m x

( )
2 2

4 21 ( )ˆ ( ) ( ) ( ) 2 ( )
4 ( )

( )
( )

f x RMSE m x h S K m x m x K
f x nhf x

σ′⎡ ⎤′′ ′+ +⎢ ⎥
⎣ ⎦

      (25) 

    
One of the beneficial results of performing the above tedious analysis for any given estimator is 
that we can now look at the final result , i.e equation (25)  and make certain conclusions.  
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One of the main conclusions is made by inspecting  the bias term (first term of 25). If the  term 
f(x) is present, then it means that the estimator is dependent on the density of the design points. 
In other words, in the language of CFD,  the estimator is not “mesh free”. It is design points or 
grid points dependent. In this sense, the GRNN is not truly mesh free, despite being considered 
as the simplest basic method of all mesh free approaches. It is possible to construct, weight 
kernels, K, which will make an estimator truly mesh free. This is an area of active research in 
mesh free CFD.  
 
The other conclusion to draw form the MSE, equation is on the accuracy (or consistency) of the 
estimator. In other words, how will the estimator converge to the true estimate of the unknown 
function, m(x)  if at all ?. From inspecting (25)  it is clear that the GRNN is consistent. This 
means that as the number of data points increases the error of approximation decreases. In the 
limit as n→∞, h → 0 and nh should tend to ∞. This means that h should approach zero at a rate 
that is slower than order O( n-1). A simple optimization of MSE to obtain an optimal h, will 
reveal the rate of convergence of MSE to zero. In the case of GRNN, the rate of convergence is 
of order O(n-4/5), which as expected is slower than for most parametric estimators with rates of 
order O(n-1). 
 
Complex Variables Method of Derivatives (CSM) 
 
Given a complex number z = x + iy, we can write the complex function ( )f z  as 
 ( ) ( , ) ( , )f z u x y iv x y= +  (26) 
where u and v are real valued functions. Using the basic definition of derivative, we can write 

 0
( ) (( ) limh

)f z h f zf z
h→

+ −′ =  (27) 

h can be both real or imaginary. Now as h→0 through real values, the limit ( )f z′  must be the 
same for both approaches of h to zero.  First if h is real,  

     0 0 0
( ) ( ) ( , ) ( , ) ( , ) ( ,lim lim limh h h

)f z h f z u x h y u x y v x h y v x yi
h h→ → →

+ − + − + −
= +

h
             (28) 

                                           

 u i v
x x

∂ ∂
= +

∂ ∂
 (29) 

Now if h is imaginary 

      0 0 0
( ) ( ) ( , ) ( , ) ( , ) ( , )lim lim limh h h

f z ih f z u x y h u x y v x y h v x yi
ih ih ih→ → →

+ − + − + −
= +           (30) 

 v i
y y

u∂ ∂
= −

∂ ∂
 (31) 

Since the limit  ( )f z′  must be the same, we obtain  

 u v uand v
x y y x

∂ ∂ ∂ ∂
=     = −

∂ ∂ ∂ ∂
 (32) 

Which are the Cauchy-Riemann equations. From the first equation 

 0
( , ) ( , )limh

u v x y h v x y
x h→

∂ + −
=

∂
 (33) 

and on the real axis y = 0, u(x) = f(x) and v(x) = 0, therefore for real functions 
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0
( , ) ( )limh

u v x h
x h→

v x∂ −
=

∂
         (34) 

which can now be written as 

 [ ]
0

Im ( )
limh

f x ihf
x h→

+∂
=

∂
 (35) 

This equation is then the basis for the Complex Step Method (CSM) of derivatives. Any code 
that computes any given function can be made to compute the first derivatives of the function by 
simply converting the code to run using complex variables. In the case of GRNN, when the code 
is converted to run using complex variables, the number of  operations to compute N values 
given n data points is of order O(kNn) (see below). Where k can be as high as 5 depending on 
the arithmetic operations used to compute the function, Smith (1998). It can be shown via a 
Taylor series expansion that the estimated derivatives are of O(h2), Anderson et.al., (2000).   
 
Boosting 
  
Here is described, a new novel algorithm for raising the order of consistency (reducing the bias) 
of the GRNN estimator. The algorithm is based on boosting and is known as L2Boost. Basically 
boosting applies a B-steps algorithm to compute B function estimates by repeatedly applying a 
given method, called a weak learner (WL) to B different re-weighted samples. The estimates are 
then combined into a single estimate which is the final output.  
 
Thus, the basic requirements of boosting is a WL and a method of assigning importance to data 
(i.e. a weighting strategy). The WL must have low variance. This is so that each boosting step 
makes a small, low variance step, iteratively reducing the bias of the estimator. This means that 
from the MSE equation for the GRNN above, a crude GRNN (or WL) will have a large 
bandwidth, h, which is larger than the optimal value. The other requirement for boosting, i.e the 
weighting scheme is inherent in the implementation of GRNN, via the kernel.  
 
The boosting algorithm implemented in this report is the L2Boost method  recently described by 
Buhlmann and Yu, (2003). This method was applied to the GRNN, boosting its accuracy 
significantly. In L2Boost, a WL is used to iteratively learn the residuals of the estimator  in B-
steps. The final result is a combination of the estimates of all of the B-steps. The steps of 
implementation are as follows: 
 
Step 1 
Apply the crude learner to available data to obtain the pilot estimate  0m̂
 0ˆ ( ) ( , )i im x GRNN X Y=  (36) 
Step 2  repeat  for b = 1 … B 
Compute the residuals  
 1ˆ ( )i i b iY m Xε −= −  (37) 
i.e. use the previous estimate of  to compute the residuals at design points Xˆ ( )m x i

 
Step 3 
Learn (or fit ) the residuals to the WL 
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 1ˆ ( ) ( , )br x GRNN Xi iε− =  (38) 
Step 4 
Update the estimator 
 1 1ˆ ˆ ˆ( ) ( ) ( )b b bm x m x r x− −= +  (39) 
 
Step 5 
 Go back to step 2 and repeat  loop until B, steps. 
 
That is a brief basic description of L2Boost for more details consult recent papers by Di Marzio 
and Taylor, (2004) and  Buhlmann and Yu, (2003) as well as Friedman, (2001). 
 
Boosting and  Hierarchical Training of NPCA-NN (HT of NPCA-NN) 
 
In our previous report, Butuk, (2002) we describe a novel method developed to speed up the 
training of NPCA-NN model. The method developed was termed Hierarchical Training of 
NPCA-NN (HT of NPCA-NN). At the time of developing HT of NPCA-NN, there appeared to 
be no theoretical justification as to why the method worked. This has now changed with the 
recent publication of Buhlmann and Yu, (2003) paper. It turns out that HT of NPCA-NN is only 
a slightly different implementation of L2Boost. For example the WLs are the networks 5-8-2-8-5, 
5-3-2-3-5 and 5-3-2-3-5 as described in that earlier report. Therefore HT of NPCA-NN was the 
first attempt to apply a form of   L2Boost to standard neural networks. With guidance of new 
results, this algorithm will now be easily improved. At that time, it was demonstrated that it 
resulted in significant improvement in the convergence of NPCA-NN algorithm.  
 
Results and Discussions 
 
This section of the report presents the numerical experimental results carried out on a test 
function. First to be described is the function used as a test function. Next will be described the 
implementation of GRNN to estimate the known function from sampled design or grid points. 
The GRNN prediction will be compared with known values. The efficiency of GRNN 
implementation will be noted  and the strategy used to improve this efficiency will be described. 
Next to be described is the determination of derivatives of GRNN analytically and via the 
Complex Step Method (CSM). CSM will be shown to be fast and superior to the analytic 
approach of kernel derivatives.  This will be followed by the description of implementation of 
the new boosting algorithm that significantly improves the accuracy of GRNN and allows the use 
of a single bandwidth that is chosen conservatively to be sub-optimal. Finally different 
combinations of results will be presented.  
 
A two dimensional function was chosen as the  test function and also to serve as a simulator of 
typical 2-dimensional CFD problem. The test function chosen was 
 2( , ) cos 3 yf x y y x x e= +  (40) 
The partial first order derivatives of the function are 

 
2

( , ) sin 6

( , ) cos 3

y
x

y
y

f x y y x xe

f x y x x e

= − +

= +
 (41) 
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The design points chosen were  and [ 7,7]x∈ − [ 7,7]y ∈ − .   
 
The implementation of GRNN on the 2-dimensional test function was implemented using the 
equation: 

 

2 2

2 2

2 2

2 2

( ) ( )
2 2

,
1 1

( ) ( )
2 2

1 1

( , )

i i

i i

x X y Ym n
h h

i j
j i

x X y Ym n
h h

j i

f e e
f x y

e e

− − − −

= =

− − − −

= =

=
∑∑

∑∑
 (42) 

Note that the recommended product kernel was used because the function is two dimensional. As 
is evident, our chosen kernel is the normal Gaussian. With regards to the efficiency of 
implementation, suppose that we need to evaluate the GRNN at N distinct data points given n 
test data. A direct naïve application of (42) would result in O(Nn) operations for the 
determination of the estimator at N grid points. Now since the Gaussian kernel used has compact 
support roughly at  [-4h,4h], significant computer time can be saved by performing the local 
averaging within the region of support of the kernel. With this speed up the number of operations 
could then be O(Nnh). In all of the results to be presented below,  this speedup of GRNN was 
implemented. 
 
There are two current approaches of estimating the partial derivatives of GRNN equation (42). 
The first method is the finite difference approach, which suffers from subtractive cancellation 
errors and is therefore not considered in this report, Anderson, et. al.,(2000).  The second  
method is the kernel derivatives approach. Here (42) is differentiated directly. To obtain the 
partial derivatives with respect to x, let 

 

22

2 2

22

2 2

22

2 2

22

2 2

( )( )
2 2

,
2
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( )( )
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2 2

,
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2
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( )
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ji

ji

ji

y Yx X
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i j i
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y Yx Xm n
h h

j i

y Yx Xm n
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f x X e e
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Bx e e

Cx f e e

x X e eDx
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− −
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−−
− −
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−−
− −

= =

−−
− −

= =

−
= −

=

=

−
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Then 

 2( , )
( )x

Ax CxDxf x y
Bx Bx

= −  (43) 

 
 
To obtain the partial derivatives with respect to y, let 
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Then 

     2( , )
( )y

Ay CyDyf x y
By By

= −          (44) 

 
It is clear from the above that the kernel derivatives method of computing partial derivatives is 
complicated and involves up to five summands for each of the partial derivatives. In fact for 
higher order derivatives the analytic formulae becomes quite unwieldy because of the ratio form 
of GRNN. MSE of the derivatives kernel estimators, indicate that for estimating the rth 
derivatives, , is difficult with the MSE of order O(-4/n(2r+5)) resulting in  a slower rate of 
convergence for higher values of r, Stone (1982). Below are two complete Fortran programs to 
compute derivatives of GRNN estimator using the analytic kernel differentiation approach and 
the new CSM.  

( )rm x

 
Program 1. Fortan Program for GRNN and its  1st order Derivatives Using Kernel Derivatives 
Method (equations (42-44) above): 
 
C     ***************MAIN PROGRAM ^*************************************  
      PROGRAM MULTIVARI 
      IMPLICIT REAL (A-H,O-Z) 
      PARAMETER (RHO=0.05,NX=500,NY=500,NT=20) 
      DIMENSION X(NX),Y(NY),Y1(NX,NY),Y2(NT),YDX(NT), 
     +Y3(NT),W(NT),W1(NT),Y4(NT),Y5(NT),YDY(NT),elapsed(2) 
C 
C COMPLEX VARIABLES 
C       
 
      OPEN(UNIT=77,FILE='aout.dat',FORM='FORMATTED', 
     &       STATUS='unknown') 
c       
C     Generate Random Design Test variables between 0 and 7 
c        
      IDUM=6 
      DO 10 I = 1,NT 
      W(I) = RAN0(IDUM)*7    
      W1(I) = RAN0(IDUM)*7   
  10  CONTINUE 
 
C    
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C GENERATE DESIGN POINTS 
C        
      X(1)=-10 
      X(NX)=10 
      Y(1)=-10 
      Y(NY)=10 
      DX=(X(NX)-X(1))/FLOAT(NX) 
      DY=(Y(NY)-Y(1))/FLOAT(NY) 
      DO 13 I=2,NX-1 
      X(I)=X(I-1)+DX 
 13   CONTINUE   
      DO 14 I=2,NY-1 
      Y(I)=Y(I-1)+DY 
 14   CONTINUE   
C 
C    COMPUTE THE FUNCTIONAL VALUES AT DESIGN POINTS: THIS IS WHERE YOU CHANGE THE 
FUNCTION 
C    MAKE SURE CHOSEN FUNCTION MATCHES WITH (X,Y) DESIGN POINTS ABOVE 
C 
      DO 15 I = 1,NX  
      DO 15 J=1,NY 
      Y1(I,J)=Y(J)*COS(X(I))+3*(X(I)**2)*EXP(Y(J))  
  15  CONTINUE  
C 
C      NOW ESTIMATE FUNCTION AND ITS DERIVATIVES VIA NATARAY-WATSON SMOOTHER 
C 
 
      CALL FUNCF(NX,NY,NT,X,Y,Y1,Y2,W,W1,RHO) 
      CALL FUNCDX(NX,NY,NT,X,Y,Y1,YDX,W,W1,RHO) 
      CALL FUNCDY(NX,NY,NT,X,Y,Y1,YDY,W,W1,RHO) 
 
C 
C OUTPUT RESULTS 
C 
 
      WRITE(77,*)'X   Y   F   F-EST  F-ERR  FDX  FDX-ERR  FDY  FDY-ERR' 
       
      DO 20 K = 1,NT 
      Y3(K)=W1(K)*COS(W(K))+3*(W(K)**2)*EXP(W1(K)) 
      Y4(K)=-W1(K)*SIN(W(K))+6*W(K)*EXP(W1(K)) 
 Y5(K) = COS(W(K)) + 3*(W(K)**2)*EXP(W1(K)) 
      err = abs(Y2(K)- Y3(K)) 
      errx = abs(YDX(K)- Y4(K)) 
 erry = abs(YDY(K)- Y5(K)) 
 
      WRITE(77,1) W(K),W1(K),Y3(K),Y2(K),err,YDX(K),errx,YDY(K),erry 
   20 CONTINUE 
 
 
   1  FORMAT(1X,F10.3,1X,F10.3,1X,F10.3,1X,F10.3,1X,F10.3,1X,F10.3,1X, 
     +F10.3,1X,F10.3,1X,7(F10.3,1X)) 
 
 
      total = ETIME(elapsed) 
      print *, 'End: total=', total, ' user=', elapsed(1), 
     &         ' system=', elapsed(2) 
 
      STOP 
      END 
       
      SUBROUTINE FUNCF(NX,NY,NT,X,Y,Y1,Y2,W,W1,RHO) 
      IMPLICIT REAL (A-H,O-Z) 
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      DIMENSION X(NX),Y(NY),Y1(NX,NY),Y2(NT),W(NT),W1(NT) 
      DO 20 K = 1,NT 
      SUM1=0.0 
      SUM2=0.0  
          DO 30 I= 1,NX 
          D1 =(X(I)-W(K))**2 
          DO 30 J=1,NY 
          D2 =(Y(J)-W1(K))**2 
          H =(EXP(-(D1+D2)/(2*(RHO)**2))) 
          H1=H*Y1(I,J)     
          SUM1=SUM1+H 
          SUM2=SUM2+H1 
  30      CONTINUE 
      Y2(K)= SUM2/SUM1 
  20  CONTINUE 
      RETURN 
      END 
 
      SUBROUTINE FUNCDX(NX,NY,NT,X,Y,Y1,Y2,W,W1,RHO) 
      IMPLICIT REAL (A-H,O-Z) 
      DIMENSION X(NX),Y(NY),Y1(NX,NY),Y2(NT),W(NT),W1(NT) 
      DO 20 K = 1,NT 
      SUMN1=0.0 
      SUMN2=0.0 
      SUMN3=0.0 
      SUMD1=0.0 
      SUMD2=0.0  
       DO 30 I= 1,NX 
       D1 =(X(I)-W(K))**2 
       DO 30 J=1,NY 
       D2 =(Y(J)-W1(K))**2 
       HN1=Y1(I,J)*(EXP(-(D1+D2)/(2*(RHO)**2)))*(-(W(K)-X(I))/(RHO)**2) 
       HD1=(EXP(-(D1+D2)/(2*(RHO)**2))) 
       HD2=(EXP(-(D1+D2)/(2*(RHO)**2)))**2 
       HN2=Y1(I,J)*(EXP(-(D1+D2)/(2*(RHO)**2))) 
       HN3=(EXP(-(D1+D2)/(2*(RHO)**2)))*(-(W(K)-X(I))/(RHO)**2)    
       SUMN1=SUMN1+HN1 
       SUMN2=SUMN2+HN2 
       SUMN3=SUMN3+HN3 
       SUMD1=SUMD1+HD1 
       SUMD2=SUMD2+HD2 
  30   CONTINUE 
      Y2(K)= (SUMN1/SUMD1)-((SUMN2*SUMN3)/SUMD2) 
  20  CONTINUE 
      RETURN 
      END 
 
      SUBROUTINE FUNCDY(NX,NY,NT,X,Y,Y1,Y2,W,W1,RHO) 
      IMPLICIT REAL (A-H,O-Z) 
      DIMENSION X(NX),Y(NY),Y1(NX,NY),Y2(NT),W(NT),W1(NT) 
      DO 20 K = 1,NT 
      SUMN1=0.0 
      SUMN2=0.0 
      SUMN3=0.0 
      SUMD1=0.0 
      SUMD2=0.0  
       DO 30 I= 1,NX 
       D1 =(X(I)-W(K))**2 
       DO 30 J=1,NY 
       D2 =(Y(J)-W1(K))**2 
       HN1=Y1(I,J)*(EXP(-(D1+D2)/(2*(RHO)**2)))*(-(W1(K)-Y(J))/(RHO)**2) 
       HD1=(EXP(-(D1+D2)/(2*(RHO)**2))) 
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       HD2=(EXP(-(D1+D2)/(2*(RHO)**2)))**2 
       HN2=Y1(I,J)*(EXP(-(D1+D2)/(2*(RHO)**2))) 
       HN3=(EXP(-(D1+D2)/(2*(RHO)**2)))*(-(W1(K)-Y(J))/(RHO)**2)    
       SUMN1=SUMN1+HN1 
       SUMN2=SUMN2+HN2 
       SUMN3=SUMN3+HN3 
       SUMD1=SUMD1+HD1 
       SUMD2=SUMD2+HD2 
  30   CONTINUE 
      Y2(K)= (SUMN1/SUMD1)-((SUMN2*SUMN3)/SUMD2) 
  20  CONTINUE 
      RETURN 
      END 
 
C     **********RAMDOM NUMBER GENERATOR********************** 
      FUNCTION RAN0(IDUM) 
      IMPLICIT REAL (A-H,O-Z) 
      PARAMETER(IA=16807,IM=2147483647,AM=1./IM, 
     +         IQ=127773,IR=2836,MASK=123459876) 
 
      IDUM=IEOR(IDUM,MASK) 
      K=IDUM/IQ 
      IDUM=IA*(IDUM-K*IQ)-IR*K 
      IF(IDUM.LT.0)IDUM=IDUM+IM 
      RAN0=(AM*IDUM) 
      IDUM=IEOR(IDUM,MASK) 
      RETURN 
      END 
 
Program 2. Fortan Program for GRNN and its  1st order Derivatives Using Complex Step Method 
(CSM): 
 
C     ***************MAIN PROGRAM ^*************************************  
      PROGRAM COMPMULTI 
      IMPLICIT REAL (A-H,O-Z) 
      PARAMETER (RHO=0.05,NX=500,NY=500,NT=20,H=0.01) 
      DIMENSION X(NX),Y(NY),Y1(NX,NY),Y2(NT), 
     +Y3(NT),W(NT),W1(NT),Y4(NT),Y5(NT),CYDX(NT),CYDY(NT),elapsed(2) 
C 
C COMPLEX VARIABLES 
C       
 COMPLEX*8 CX(NX),CY(NY),CY1(NX,NY),CY2(NT),CW(NT),CW1(NT) 
     +                ,CRHO,TEMP,HX   
 
 
      OPEN(UNIT=77,FILE='aout.dat',FORM='FORMATTED', 
     &       STATUS='unknown') 
c       
C     Generate Random Design Test variables between 0 and 7 
c        
      IDUM=6 
      DO 10 I = 1,NT 
      W(I) = RAN0(IDUM)*7    
      W1(I) = RAN0(IDUM)*7   
  10  CONTINUE 
 
C    
C GENERATE DESIGN POINTS 
C        
      X(1)=-10 
      X(NX)=10 
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      Y(1)=-10 
      Y(NY)=10 
      DX=(X(NX)-X(1))/FLOAT(NX-1) 
      DY=(Y(NY)-Y(1))/FLOAT(NY-1) 
      DO 13 I=2,NX-1 
      X(I)=X(I-1)+DX 
 13   CONTINUE   
      DO 14 I=2,NY-1 
      Y(I)=Y(I-1)+DY 
 14   CONTINUE   
C 
C    COMPUTE THE FUNCTIONAL VALUES AT DESIGN POINTS: THIS IS WHERE YOU CHANGE THE    
FUNCTION 
C    MAKE SURE CHOSEN FUNCTION MATCHES WITH (X,Y) DESIGN POINTS ABOVE 
C 
      DO 15 I = 1,NX  
      DO 15 J=1,NY 
      Y1(I,J)=Y(J)*COS(X(I))+3*(X(I)**2)*EXP(Y(J))  
  15  CONTINUE  
 
C 
C NEXT IS TO COMPUTE COMPLEX DERIVATIVES CDX AND CDY CONVERT SUBROUTINE FUNCF TO 
COMPLEX CFUNCF 
C 
 HX= CMPLX(H)  
      DO 25 I = 1,NX  
      DO 25 J=1,NY 
      CY1(I,J)=CMPLX(Y1(I,J))  
  25  CONTINUE   
      DO 26 I=1,NX 
      CX(I)=CMPLX(X(I))  
  26  CONTINUE   
      DO 27 I=1,NY 
      CY(I)=CMPLX(Y(I))  
  27  CONTINUE   
      DO 28 I=1,NT 
      CW(I)=CMPLX(W(I))  
      CW1(I)=CMPLX(W1(I))  
  28  CONTINUE   
      CRHO = CMPLX(RHO) 
C     DX DERIVATIVES 
 CALL CFUNCDX(NX,NY,NT,CX,CY,CY1,CY2,CW,CW1,CRHO,HX) 
 DO 29 J=1,NT 
 CYDX(J)=AIMAG(CY2(J))/H 
 Y2(J) = REAL(CY2(J)) 
  29  CONTINUE   
C     DY DERIVATIVES 
 CALL CFUNCDY(NX,NY,NT,CX,CY,CY1,CY2,CW,CW1,CRHO,HX) 
 DO 30 J=1,NT 
 CYDY(J)=AIMAG(CY2(J))/H 
  30  CONTINUE   
 
C 
C OUTPUT RESULTS 
C 
 
      WRITE(77,*)'X     Y     F   F-EST F-ERR CDX   CERRX   CDY   CERRY'  
       
      DO 20 K = 1,NT 
      Y3(K)=W1(K)*COS(W(K))+3*(W(K)**2)*EXP(W1(K)) 
      Y4(K)=-W1(K)*SIN(W(K))+6*W(K)*EXP(W1(K)) 
 Y5(K) = COS(W(K)) + 3*(W(K)**2)*EXP(W1(K)) 
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      err = abs(Y2(K)- Y3(K)) 
      cerrx = abs(CYDX(K)- Y4(K)) 
 cerry = abs(CYDY(K)- Y5(K)) 
 
      WRITE(77,1) W(K),W1(K),Y3(K),Y2(K),err,CYDX(K),cerrx,CYDY(K),cerry 
   20 CONTINUE 
 
   1  FORMAT(1X,F10.3,1X,F10.3,1X,F10.3,1X,F10.3,1X,F10.3,1X,F10.3,1X, 
     +F10.3,1X,F10.3,1X,7(F10.3,1X)) 
 
      total = ETIME(elapsed) 
      print *, 'End: total=', total, ' user=', elapsed(1), 
     &         ' system=', elapsed(2) 
 
      STOP 
      END 
       
      SUBROUTINE CFUNCDX(NX,NY,NT,X,Y,Y1,Y2,W,W1,RHO,HH) 
      IMPLICIT COMPLEX*8 (A-H,O-Z), INTEGER(I-N) 
      DIMENSION X(NX),Y(NY),Y1(NX,NY),Y2(NT),W(NT),W1(NT) 
      DO 20 K = 1,NT 
 TEMP=W(K) 
 W(K)=CMPLX(REAL(W(K)),REAL(HH)) 
      SUM1=0.0 
      SUM2=0.0  
          DO 30 I= 1,NX 
          D1 =(X(I)-W(K))**2 
          DO 30 J=1,NY 
          D2 =(Y(J)-W1(K))**2 
          H =(CEXP(-(D1+D2)/(2*(RHO)**2))) 
          H1=H*Y1(I,J)     
          SUM1=SUM1+H 
          SUM2=SUM2+H1 
  30      CONTINUE 
      Y2(K)= SUM2/SUM1 
 W(K)=TEMP 
  20  CONTINUE 
      RETURN 
      END 
 
      SUBROUTINE CFUNCDY(NX,NY,NT,X,Y,Y1,Y2,W,W1,RHO,HH) 
      IMPLICIT COMPLEX*8 (A-H,O-Z), INTEGER(I-N) 
      DIMENSION X(NX),Y(NY),Y1(NX,NY),Y2(NT),W(NT),W1(NT) 
      DO 20 K = 1,NT 
 TEMP=W1(K) 
 W1(K)=CMPLX(REAL(W1(K)),REAL(HH)) 
      SUM1=0.0 
      SUM2=0.0  
          DO 30 I= 1,NX 
          D1 =(X(I)-W(K))**2 
          DO 30 J=1,NY 
          D2 =(Y(J)-W1(K))**2 
          H =(CEXP(-(D1+D2)/(2*(RHO)**2))) 
          H1=H*Y1(I,J)     
          SUM1=SUM1+H 
          SUM2=SUM2+H1 
  30      CONTINUE 
      Y2(K)= SUM2/SUM1 
 W1(K)=TEMP 
  20  CONTINUE 
      RETURN 
      END 
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The above two programs to compute 20 function values and their partial derivatives using the 
kernel derivatives method and the complex step method were timed using the Fortran timing 
function “etime”. The results for the CSM method was 9.073sec and the kernel derivatives 
method took 36.893sec. The speedup using the CSM method is therefore superior by about a 
factor of 4. The grid mesh was 500x500 and a bandwidth of 0.05 was used for both methods. 
 
Next to report is the results of applying the novel L2Boost algorithm described above to GRNN. 
First following the recommendations above a crude GRNN was chosen. Application of the 
L2Boost algorithm turned the crude GRNN into an accurate estimator in only a few B-steps (5 
steps). Direct implementation of GRNN using the above test function required an h value of 0.05 
and a 500 x 500 grid size in order to reduce the relative error of function approximation to less 
than 1%. Note that in kernel function approximation, the higher the dimension  the more data 
points are required to achieve a desired accuracy. This is due to the so called “curse of 
dimensionality” inherent in many kernel based estimators. Now with  L2Boosting, we were able 
to obtain similar accuracy using only 50 x 50 grid points and a larger h value of 0.5.  Only 5 
boosting steps were required. This shows that L2Boost  is a simple approach to raise the 
consistency (or order) of approximation of an estimator. L2Boosting may also address the curse 
of dimensionality for higher dimensional data as shown by the reduced number of grid points 
required for a desired accuracy. With respect to a choice of a bandwidth, h, boosting makes its 
choice robust as the results no longer depend on it. This is as long  as the initial choice which is 
kept constant is chosen so as to make the variance of the MSE of the estimator low. For the 
GRNN case, this means that h should be chosen to be larger than the optimal value obtained via 
analysis of MSE. This L2Boosted GRNN maybe comparable in efficiency but superior in 
simplicity to the modified GRNN reported in; Krysl  and Belytschko (2000). The modified 
GRNN reported therein is in fact closely related to the popular Local Polynomial Kernel 
Estimators (LPKE), using a local linear model, Wand and Jones (1995). However, in that paper 
there is no mention of how the bandwidth was determined since its determination can be costly 
computationally. 
 
Figure 1 shows the exact functional values of the test function, (40). The exponential nature of 
the function is evident in this figure. Functional values range from less than 1 to over 150,000. In 
order to compare the performance of GRNN of the test function on various estimates, we define 
the relative error as follows  

 Re True Estimatelative Error
True
−

    =  (45) 

 
With this definition of relative error, Figure 2 compares the relative error of GRNN estimates of 
the test function using the L2Boost algorithm and the unboosted GRNN. The figure shows 
estimates for 25 equally spaced (x,y) points. It is clear from the figure that the boosting algorithm 
significantly improves the accuracy of the function estimates. The largest errors of the L2Boost 
algorithm are at the boundaries. This, as expected is due to the boundary effects, which makes 
the bias of the GRNN to be largest at the boundary. It can be shown that without accounting for 
the boundary effects, the bias for our estimate is O(h) instead of O(hˆ ( )m x 2) at boundary points. 
This means that for [ ][0, ) ( , ]x h a h a∈ ∪ −  where 0 is the left boundary and a the right boundary,  
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the performance of GRNN is not consistent. This inconsistency can easily be corrected, however,  
this has not been done in this report.  
 
There are two basic approaches for accounting for boundary effects; the first approach is to use 
specially constructed kernels, that are constructed so that the bias is a order O(h2) for all x > 0. 
Zhang and Karunamuni, (2000). The other approach for correcting for boundary effects, is to use 
the new approach of R-Functions, Rvachev  and Sheiko (1995). This is an elegant approach that 
will be adopted in this work. 
 
Figures 3 and 4 shows the comparison of actual partial derivatives of the test function with the 
respect to x and y respectively. The errors of the partial derivatives with respect to x are larger 
especially at the boundaries. We believe that these errors can be significantly reduced once the 
kernel boundary effects are taken into account.  
   
Figures 5 to 10 shows coutour plots of percentage relative errors for boosted and unboosted 
estimates of the test function and its first partial derivatives. These figures are meant to highlight 
the significant accuracy obtained by the new L2Boost algorithm via the combination of GRNN 
and CSM. Figure 5 is the coutour plot of unboosted function estimate. Figure 6 is for the 
L2Boosted function estimate. The improvement in the estimate is quite significant. This was 
done with a fixed bandwidth, h,  without the need of the usual time-consuming optimization 
algorithms to choose the best bandwidth parameter. Finally Figures 7-10 shows the significant 
reduction in relative errors for both the partial derivatives estimates of the test function ∂f/∂x and 
∂f/∂y.  
 
Conclusions and Recommendations 
 
A detailed mathematical theory of the Generalized Regression Neural Network (GRNN) function 
approximator has been presented. GRNN has a fast training time than traditional Neural 
Networks (NN). It has been shown that GRNN can be combined with L2Boost algorithm to 
significantly improve its accuracy in a few B-boosting steps. It has also been demonstrated that 
GRNN can be combined with the new Complex Step Method (CSM) to obtain accurate 1st order 
derivatives. As far as the objectives of this research is concerned the following recommendations 
can be made 

1. The L2Boost algorithm will be used to improve the Hierarchical Training of NPCA-NN 
(HT of NPCA-NN) algorithm developed for chemical mechanism data. Note that HT of 
NPCA-NN was the first attempt to apply a form of  L2Boost to NN. 

2. Due to the extremely high dimensions of chemical mechanism data, GRNN cannot be 
used to replace NPCA-NN despite its fast training characteristic. 

3. GRNN is only good for data of dimensions 3 or less, such as CFD. Our hope for studying 
GRNN was to take advantage of its fast training attributes and design it as NPCA-NN. 
However due to the “curse of dimensionality” it will be inefficient if implemented as 
NPCA-NN. It best use, however is in mesh free CFD which will be an  interesting 
application with a high pay off. 

4. GRNN combined with CSM and L2Boost will be a novel and efficient approach for mesh 
free CFD. This is the approach we will follow to develop our in-house 2-dimensional 
CFD solver to test the NPCA-NN model that has been successfully demonstrated. The 
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previously reported 2-dimensional Euler solver will be extended to include reactive flow 
equations implemented via the mesh free GRNN. Note that current CFD solvers 
experience convergence difficulties when solving reactive flows. This is usually 
attributed to two main causes; the stiffness of the partial differential equations of reactive 
flows, and the quality of the mesh. If the solver can be made mesh free, then the second 
cause can be eliminated and better convergence of the solvers obtained. When coupling 
NPCA-NN to CFD, therefore, it will be advantageous to couple it to a mesh free solver.   

5. Recent publication of paper by Buhlmann and Yu, (2003) has given credibility and basic 
theory  to the HT of NPCA-NN algorithm developed in our earlier work. 
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Figure 1. Exact Function Values of Equation (40). 
 
 

 
 

Figure 2: Comparison of L2Boost and UnBoosted GRNN estimates of Test Function. 
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Figure 3: Comparison of Partial Derivatives, df/dx. Estimated vs. Actual 
 
 

 
 
 

Figure 4: Comparison of Partials Derivatives, df/dy. Estimated vs. Actual. 
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Figure 5: Percentage Relative Errors of UnBoosted Function Estimated. 
 
 

 
 

Figure 6: Percentage Relative Errors of  L2Boosted Test Function Estimate 
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Figure 7: Percentage Relative Errors of UnBoosted Partial Derivatives, df/dx, Estimate 
 
 

 
 

Figure 8: Percentage Relative Errors of L2Boosted Partial Derivatives, df/dx, of Test Function. 

 29



 
 

Figure 9: Percentage Relative Errors of UnBoosted Partial Derivatives, df/dy, Estimate 
 

 

 
 

Figure 10: Percentage Relative Errors of L2Boosted Partial Derivatives, df/dy, of Test Function. 
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