Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement

PDF Version Also Available for Download.

Description

A new code and methodology are introduced for solving the fully general relativistic magnetohydrodynamic (GRMHD) equations using time-explicit, finite-volume discretization. The code has options for solving the GRMHD equations using traditional artificial-viscosity (AV) or non-oscillatory central difference (NOCD) methods, or a new extended AV (eAV) scheme using artificial-viscosity together with a dual energy-flux-conserving formulation. The dual energy approach allows for accurate modeling of highly relativistic flows at boost factors well beyond what has been achieved to date by standard artificial viscosity methods. it provides the benefit of Godunov methods in capturing high Lorentz boosted flows but without complicated Riemann solvers, ... continued below

Physical Description

PDF-file: 39 pages; size: 2.9 Mbytes

Creation Information

Anninos, P; Fragile, P C & Salmonson, J D May 6, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A new code and methodology are introduced for solving the fully general relativistic magnetohydrodynamic (GRMHD) equations using time-explicit, finite-volume discretization. The code has options for solving the GRMHD equations using traditional artificial-viscosity (AV) or non-oscillatory central difference (NOCD) methods, or a new extended AV (eAV) scheme using artificial-viscosity together with a dual energy-flux-conserving formulation. The dual energy approach allows for accurate modeling of highly relativistic flows at boost factors well beyond what has been achieved to date by standard artificial viscosity methods. it provides the benefit of Godunov methods in capturing high Lorentz boosted flows but without complicated Riemann solvers, and the advantages of traditional artificial viscosity methods in their speed and flexibility. Additionally, the GRMHD equations are solved on an unstructured grid that supports local adaptive mesh refinement using a fully threated oct-tree (in three dimensions) network to traverse the grid hierarchy across levels and immediate neighbors. A number of tests are presented to demonstrate robustness of the numerical algorithms and adaptive mesh framework over a wide spectrum of problems, boosts, and astrophysical applications, including relativistic shock tubes, shock collisions, magnetosonic shocks, Alfven wave propagation, blast waves, magnetized Bondi flow, and the magneto-rotational instability in Kerr black hole spacetimes.

Physical Description

PDF-file: 39 pages; size: 2.9 Mbytes

Source

  • Journal Name: Astrophysical Journal; Journal Volume: 635

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-212118
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 878208
  • Archival Resource Key: ark:/67531/metadc878949

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 6, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 23, 2016, 11:51 a.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Anninos, P; Fragile, P C & Salmonson, J D. Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement, article, May 6, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc878949/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.