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PREFACE

The work reported herein was performed as part of the baae technology

activity under the Flow Induced Vibration Programs (189a Nos. C?659 and

02683) sponsored by ERDA/RRD. The overall objective of the activity is

to develop new and/or improved analytical methods and guidelines for

designing IUFBR components to avoid detrimental flow induced vibration.

Heat exchanger tubes and reactor fuel pins are long, slender, bean-

like components typically arranged in bundles and immersed in a flowing

liquid. As such, they are susceptible to flow induced vibration. The

excitation mechanism may be associated with vortex-shedding, fluldelastic

interaction, or random pressure fluctuations in the turbulent flow.

Designing to avoid large amplitude motion, that is, to avoid a resonance

condition or instability condition, and the prediction of component

response, require knowledge of the dynamic behavior of the components.

However, cylinders in a closely spaced bundle do not respond as single

cylinders immersed in a liquid, rather, interaction with the liquid causes

coupled motion of groups of cylinders. The fundamental natural frequency

of the coupled system will be lower than that of a single cylinder immersed

in a liquid.

Understanding and modeling fluid/structure interaction in cylinder

bundles is a basic requirement in the development of analytical methods

and guidelines for designing heat exchanger and reactor fuel assemblies

that are free from component vibration problems. As a first step toward

satisfying this requirement, in this report, two parallel cylinders

vibrating in a liquid are studied analytically. A method of analysis is

presented for free and forced vibrations. Steady-state responses to flow

noises are included. The results illustrate the significance of the inter-

action of two structures in a liquid, and show that an analysis which does

not account for fluid coupling effect is, in general, not conservative.
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The analysis method presented will be extended to account for fluid/

structure coupling In bundles and will be used in the development of sets

of design curves corresponding to various values of dlsplaced-fluld-nass

to cylinder-mass, and gap to radius ratios. These curves will be included

in a future design guide and will permit determination of the added mass

coefficients and natural frequencies of coupled cylinder bundle systems.
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NOMENCLATURE

a = arbitrary constants in Eq. 8

a = coupling coefficient given by Eq. 18

A = matrix elements given by Eq. 22

B = matrix elements given by Eq. 22
mn

c. * coefficient of viscous damping

C = matrix elements given by Eq. 22
2QX1

0 * matrix elements given by Eq. 22

E, = modulus of elasticity

f. = excitation force

f = vortex shedding frequency

F. = hydrodynamic force

g * axial distribution of force

G = gap between cylinders

h.hj.,

h£ ~ parameter given by Eq. 4

1 • moment of inertia of cylinder

% = rod length

m, = mass of cylinder per unit length

M, > mass of fluid displaced by cylinder per unit length

p = nth root of Eq. 9

q. = generalized coordinate

q. * generalized coordinate

Q. = generalized force

r = parameter defined by Eq. 10

R - distance between cylinder centers

R. * radius

t = time

u. - cylinder displacement



tij » dlmenslonless cylinder displacement

V » flow velocity

x « axial coordinate

« « parameter given by Eq. 18

& - Kronecker deltamn

5, * modal damping ratio

X « 1 for in-plane notion and -1 for out-of-plane motion

p. « added mass coefficient (k * 1,2,3)

p • fluid density

$, - orthonormal functions of cylinder in vacuo

i> « phase angle

id » circular frequency

u. - natural frequency of nth mode of cylinder j in liquid

Z, - natural frequency of nth mode of cylinder j in vacuo

ft - natural frequency of coupled mode

Subscripts

j denotes rod 1 (j - 1) or rod 2 (j - 2)

n denotes mode number



DYNAMIC RESPONSE OF TWO PARALLEL

CIRCULAR CYLINDERS IN A LIQUID

by

Shoei-sheng Chen

ABSTRACT

The problem of two parallel circular cylinders vibrating in a liquid

is studied analytically. First, the equations of motion including fluid

coupling are formulated using the added mass concept. Then, a closed form

solution and an approximate solution are obtained for free vibration.

Finally, the steady state responses of two cylinders subjected to harmonic

excitations are presented. The results of this study illustrate the

significance of the interaction of two structures in a liquid.



I. INTRODUCTION

The vibration response of rod bundles in liquids to various types

of excitations, including earthquakes, fluid flows, and acoustic noises,

is of importance in the design of heat exchangers and reactor internal

components such as fuel assemblies. Several studies have been made on the

coupled motion of multiple rods in a liquid. Livesey and Dye [1] presented an

experimental investigation on the possible vibration modes of a single row of rods

mounted normal to an air flow; Mazur [2] considered the fluid forces

acting on two cylinders moving in an ideal fluid; Wilson and Caldwell [3]

utilized a water flow tank to observe conditions for vortex-shedding

induced vibrations of two parallel pipes, parallel to a flat plane; and

Shimcgo and Inui [4] analyzed the vibrations of two and four identical

circular cylinders vibrating in water. In general, the analysis of the

vibration modes and responses of a group of cylinders in a liquid is

difficult because of the difficulty in accounting for the coupling effect

of the surrounding fluid.

As a first step in the development of a model for the vibration of

heat-exchanger tubes and nuclear fuel assemblies, two parallel cylinders

vibrating in a liquid are studied analytically. First, the equations of

motion including fluid coupling are derived using the added mass concept.

Then, a closed form solution and an approximate solution are obtained

for free vibration; some important conclusions are drawn from the analyses.

Finally, steady state responses of two cylinders subjected to flow exci-

tations are presented. The results of this study illustrate the significance

of the interaction of two structures in a liquid and show that an analysis

which does not account for the coupling effect is not conservative.

Numbers in brackets designate References at. the end of paper.



II. EQUATIONS OF NOTION

Consider two parallel circular cylindrical rods (designated 1 and 2),

immersed in a liquid, as illustrated in Fig. 1. Rod motions consist of

an in-plane displacement along the y axis and an out-of-plane displaceaent

along the z axis. The equation of motion for either in-plane or out-of-

plane motions can be written

3 u. 3u. 3 u.

where the index j denotes rod 1 (j • 1) and 2 (j = 2), x is axial coordinate,

t is time, u. is rod displacement, m is mass per unit length of the rods,

E.I. is flexural rigidity, c. is damping coefficient, F. is hydrodynaoic

force and f. is excitation force.

The hydrodynaraic forces associated with two vibrating cylinders were

considered by Mazur [2] using a two dimensional theory:

-I ._, .2 Jl
3 ux ( 2\ 3 U2

1 3t 1 * R ' 3t

and (2)

.2 ,_ 2 .2
U2 / l\ ul

F_ = ~M_y» 5- + M_p, \~o~) 5" »
3r \ / St-

for in-plane motion; and

and (3)

7 50
3'u2 ' " ^ * "

77
for out-of-plane motion. M. and M2 are the displaced masses of fluid by the

two rods, R^ and R2 are rod radii, R is the distance between the centers of

the two rods, and y^, y. and u_ are added mass coefficients given by
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Fig. 1. Schematic of two parallel circular cylindrical rods vibrating in a liquid



R* - 2R2<R2+R2) +

7%
A 2 2 2 2 2

R* - 2R*<R^ + R2) + ( R 2 - R P
u ? = 1 + 5—=

R Rj K-X

a n d 4 2, 2 2 2 2 2

R - 2R (R^ + Rp + (R^-Rp »
V = 1 + , 0 — I h coth(kh)exp(-2kh) ,

where (4)

/O2 2 2 r / n 2

h = In < r~ +1 — } •
h

and

4-']"!•h2 = 2 1 n

The values of nk (k = 1, 2, 3) depend on the dimensionless parameters

R2/R and G/R1 (G = R - R- - R 2 ) . Figure 2 presents the added mass

coefficients as functions of G/R for R2/R. =0.5 and 1.

It should be mentioned that Mazur obtained the hydrodynamic forces

based on a two dimensional theory. In the case of two vibrating rods

in liquid, the fluid field is not two dimensional. However, the three

dimensional effect is very small for large wave lengths [5]. Consequently,

the two dimensional hydrodynamic forces will be employed in this analysis.

Substituting Eqs. (2) and (3) into (1) yields

3 u 3u 3 u /R \
sizi 7-f + ci I T + ^ + » i V -^ - XM^3 \T)

U2

3t

and
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where X = 1 for in-plane motion and X =

motions in the two planes are uncoupled.

(contd.)
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III. FREE VIBRATION

A. Exact Solution

Neglect the damping terms and forcing functions in Eqs. (5) and let

u. = R.u exp(iwt) , (6)
J J J

where i = /^l and w is the vibration frequency. Substituting Eq. (6)

into (5) yields

4- / R 2 \ 2 2
d u, m + U,ti, 2 ^1^3 V~R7 M

^T " ~E^- - =1 + —E-I^ "2"° •

and (7)

u u ID "» U M A A M A U M t ^̂ ™̂  I Ci)

The solution of Eqs. (7) is

8
S » Z a e X p ( p X) ,

n=l

and (8)

8

"2 = J x
 an rn e x p ( pn x ) '

where a 's are arbitrary constants and p 's are the eight roots of the

equation

p8 " ( \ I 1 1 + \ I 2 2 ) w 2 p 4\ V l E2X2 /

o4 - 0 , (9)

and



Substitution of Eqs. (8) into the boundary conditions at x = 0 and x = i,

(I is rod length) yields

[bmn){an} - {0} . (11)

The elements b depend on frequency, fluid density p, material and
ran

geometric properties of rods, and end conditions. Therefore, from Eqs.

(11), the frequency equation may be written

F(u, E..I.., mj( Rj, *( p, G) - 0 . (12)

The frequency can be calculated by Eq. (12) and mode shapes by Eqs. (8).

B. Approximate Solution

It is straightforward to obtain the frequencies from the exact

frequency equation. However, it is instructive to examine approximations to

the exact frequency. First, consider a limiting case: one of the rods is

rigid. The equation for free vibration in this case is

34u. 32u.

B.I. —f- + (m +u M ) j- " 0 . (13)
3 3 3x 3 3 3 8tz

Let the natural frequency of the nth mode of the rod j in vacuo be denoted

by u. . It is easily shown from Eq. (13) that the frequency for the rod

close to a rigid rod is

j / r T T
where j

The corresponding modal functions satisfy the relation I

.4. I
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Thus, the natural frequencies are reduced in proportion to 1/Zl + u 8. ,

and the modal functions are exactly the same as those in vacuo.

Let

where $ 00 are the orthonormal functions of rods in vacuo. Substituting

Eq. (16) into (5) and using the orthogonality condition yield

and (17)

q2n + 2?2nUlnq?n + U L q ?n ~ X S I a
mr$1m " Q ? n ( t ) »

/n zn j.u zn /n zn ^ mn im /n
m

where

I *ln*2mdx

and

For free vibration, neglect the damping and forcing terns and let

qjn * qjn exp(iut) . (19)

Substitution of Eqs. (19) into (17) gives

l n l n V n i » 2 mm
and (20)
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Equations (20) consist of an infinite number of ordinary equations.

However, typically, only a finite number of equations is taken from

case to case according to the desired accuracy. The frequency equation

obtained from Eqs. (20) is

A : B
(21)

c ; D

where the elements of the matrices A, B, C, and D are

2 2
In mn '

and

Bmn

Cmn

Dmn

anm

(22)

When the two rods have the same type of boundary conditions,

and

"In " 92n '

a - 6nm mn,

(23)

thus, Eqs. (20) become

• 2
u -

-Xa,,

-Xa,

u> - u2n

(24)

The frequency equation becomes

a- V 2) U* - o^-K^y 0 . (25)

Eq. (25) gives two frequencies, Q. and ft. ,
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2 + u
2 ) - [(u>2 -to2 ) 2 + to o u>2 u2 ] 1 / 2 l 1 / 2 / l 2 ( l - o a ) ] 1 / 2 ,

and (26)
"in

"2n

The amplitude ratio q« / q l n i s given by

ft2 - w2

^gn . in ~ "in # { 2 7 )

' in Xo, ft.1 jn

From Eq. (25) it is easily shown that if

a ^ < 1 , (28)

the following relations are satisfied:

"in * "in' U2n '

and (29)

ft- > (I), W-

2n In, 2n

Equation (28) is found to be satisfied in all cases. Thus, the frequencies

of the coupled modes may be lower or higher than those of the uncoupled

modes.

When the two tubes are identical, u. * u. and o, • an ; therefore,
In Zn l z

Eqs. (26) and (27) reduce to
^"•--X ;
qln

and (30)

"Z* ^ ' <Tn""X *

It is obvious that ft. and ft. satisfy the inequality given in Eqs. (29).

In
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C. Qualitative Results and Numerical Examples

Some general conclusions can be drawn from the analyses:

(1) From Eqs. (16), (19), (20), (23), and (24), it is seen that if

the boundary conditions of the two rods are different, the axial mode

shapes of the individual rods during coupled rod motion will be different

from those of the individual rods in vacuo. However, if the rods have

the same type of boundary and are of the same length* the axial mode

shapes of the coupled modes will be the same as the individual rods in vacuo.

(2) Equations (21) and (25) reveal that the frequencies are independent

of \; therefore, the frequencies of in-plane motion and out-of-plane motion

are the same. In 8. , q, /q. is negative for in-plane motion (X • 1) and

positive for out-of-plane motion (X - -1); while, in (2. , <L /q, is

positive for in-plane motion and negative for out-of-plane motion. That

is, there exist out-of-phase modes, in which the rods move in opposite

directions, and in-phase modes, in which the rods move In the same direction

(see Fig. 3). Furthermore, the frequency of the out-of-phase mode of

in-plane motion is the same as that of in-phase mode of out-of-plane motion,

while, the frequency of the in-phase mode of in-plane notion is the same

as that of the out-of-phase mode of out-of-plane motion.

(3) Equations (29) show that when two rods are not identical,

the frequency obtained by assuming that the rod with higher natural fre-

quency is rigid is the upper bound of the frequency of out-of-phase mode

of in-plane motion and in-phase mode of out-of-plane motion, while the

frequency obtained by assuming that the rod with lower natural frequency

is rigid is the lower bound of the frequency of in-phase mode of in-plane

motion and out-of-phase mode of out-of-phase motion*

(A) The coupling between two rods depends on the radius ratio K./1L,

gap-radius ratio 6/R^ and mass ratio 0.. When 0. is small and G/R. is

large, the two rods will respond Independently.
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IN-PLANE MOTION

OUT-OF-PHASE MODE IN-PHASE MODE

OUT-OF-PLANE MOTION

Fig. 3. Pour normal nodes of two rods vibrating in a liquid
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(5) When two rods have the same type of boundary conditions, the

exact solution for frequencies is obtained in closed form as given in

Eqs. (26). For rods with different end conditions, the frequencies may

be computed from the exact frequency equation (12) or the approximate

equation (21).

Figure 4 shows the frequencies as functions of gap-radius ratio (G/R-)

for two identical rods vibrating in water. The rods are two identical

steel tubes whose outside radius is 1.270 cm (0.5 in.), wall thickness

0.1588 cm (0.0625 in.), and length 1.27 m (50 in.), and are simply

supported at both ends. For in-plane motion, the odd-numbered modes are

associated with out-of-phase motion and even-numbered nodes are associated

with in-phase motion, as illustrated in Fig. 4. For out-of-plane motion,

the odd-numbered modes correspond to in-phase modes, and the even-numbered

modes correspond to out-of-phase modes. From the figure, it is clear that

the frequencies of the coupled modes deviate from those of the individual

rods considerably when G/R- is small. As G/R. increases, the interactions

between the two rods vs. fluid become small and for large G/R., they will

respond independent of each other.
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IV, FORCED VIBRATION

The steady state response of two rods is considered. It is assumed

that two simply-supported rods are subjected to an excitation of the

following form:

f1(x,t) = g1(x)sina>t ,

and

«
The response can be obtained from Eqs. (16) and (17). In this case,

Eqs. (17) become

(31)

q, + 2?, u, q, + id, q, - Xa,qo « Q, sinwt ,Hln In lnun In1 In lM2n xln

and

where
(32)

Q. » ' . ; rr-rr- I g.(x)A. dx

The solutions of Eqs. (32) are easily obtained:

qln(t)

and (33)

q2n(t) - &2nsin(tot)

where o. , a. , g , and g- are solutions of the following equations:

22 2
•in"" -2?lnulnu

2 2
o_ -to

'2U
2 2

6i

Lp2nJ

0 !

(34)

L52nsin*J



18

Substituting Eqs. (33) into (16) yields

where

.1/2

(35)

and

-1<Mx) - tan

The rod displacements and other quantities of interest can be calculated

from Eqs. (35).

For illustration, the two steel rods considered earlier in free vibra-

tion study are subjected to in-plane harmonic forces of the form given by

Eq. 31 with magnitudes g- = 0.179 gm/cm (0.001 lb/in.) and g2 * 0. It is

assumed that x,. = c_ - 0.05. The responses of the two rods at midspan
in zxi

are shown in Figs. 5 and 6 where the phase angle is plotted for ip (&/2)

and the amplification factor is defined as the ratio of the displacement

amplitude to that of the deflection of rod 1 subject to a static load of

the same magnitude. In Fig. 6, the gap-radius ratio (G/R,) is equal to

0.1, the two rods are strongly coupled, and the two peaks of the response

occur close to the frequencies of the first out-of-phase and in-phase nodes.

Note that the peak response of the rod 2 is almost the same as rod 1,

although it is not subject to any direct excitation. It is also noted at

small frequencies, the two rods vibrate out-of-phase, while at frequencies

higher than the first two natural frequencies, they vibrate in-phase. In

Fig. 5, G/IL = 1.0, and from a comparison with results in Fig. 6, it can be

seen that as two rods move farther apart, the coupling effect becomes snail
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and the response of rod 2 is touch smaller than that of rod 1. It is

interesting to note that the peak response of rod 1 is much larger when

the two rods are far apart than when they are close to each other.
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V. RESPONSE TO FLOW EXCITATIONS

The vibration and stability of two cylinders subjected to parallel

and cross flows have been considered. Details from the parallel flow

study will not be presented in this paper. However, two Important conclu-

sions were reached: (1) due to the fluid coupling effect, the lowest

frequency of a two-cylinder system is lower than that of the individual

cylinders subjected to the same flow condition; and (2) the critical flow

velocity of a coupled cylinder system is reduced due to the interactions

of the two cylinders. The implication of these results is that using an

isolated cylinder as a model for fuel assembly or heat exchanger tube

vibration study is not conservative.

A few experimental studies have been performed on the flows around

a pair of parallel cylinders at various separations (e.g., [6] and [7]).

The main conclusion of these studies is as follows: When the two cylinders

are separated by a gap larger than the cylinder diameter, the frequency

of vortex shedding is the same as that for a single cylinder, while for

a gap less than the radius of the cylinder, the shedding frequency appears

to be associated with a body width equal to twice the cylinder diameter.

At the intermediate gap width, two shedding frequencies are found. The

experimental data give the following results for the main sequence of vortex

shedding frequency f :

«- 5

where V is flow velocity. These experimental results are utilized to find

the response of two cylinders to crossflow excitation.
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For illustration, the two steel rods considered in free vibration

study are subjected to a crossflow for x < 1/15. The lift forces acting

on the cylinders are assumed to be

f1(x,t) - pV
2R sin(27ifvt)

(37)

f2(x,t) - pV
2R sin(2irfvt + •)

where ty is equal to 0 or 180* [6). Two cases are presented: (a) G/R • 2.0;

and (b) G/R • 0.2. The rod displacements and phasa angles at nidspan

are shown in Figs. 7 and 8 as functions of flow velocity for • - 180*.

It is seen that the responses for the two gaps are completely different.

For G/R -2.0, the two cylinders are only weakly coupled, such that the

responses are practically the same as that of an isolated cylinder. For

G/R • 0.2, the cylinders are strongly coupled; resonance occurs at a flow

velocity approximately twice that for a single cylinder and the responses

are much larger.

When <Ji - 180°, the two cylinders always move out-of-phase. For

4i * 0s, similar results are obtained except the two cylinders vibrate

in-phase. Other calculations have been made for two cylinders with different

flexural rigidity. In this c-se, both in-phase and out-of-phase modes are

excited and there are two peaks in the response curves.
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VI. CONCLUDING RBfARKS

Various models of parallel-flow-induced vibration of fuel rods and

crossflow-induced vibration of heat exchanger tubes were developed without

considering fluid coupling effects. The results of this analysis illustrate

that neglecting the fluid coupling is, in general, not conservative.

Therefore, fluid coupling effects should be included in the development

of mathematical models for vibrations of fuel bundles and heat exchanger

tube banks. Several specific conclusions can be drawn from this study:

1. A two-cylinder system can vibrate in plane or out of plane. In

free vibration, motions in two planes are not coupled.

2. Natural frequencies of in-plane motion and out-of-plane motion

are the same. However, mode shapes are different. The frequency of in-

phase mode of out-of-plane motion is equal to that of the out-of-phase mode

of in-plane motion, while the frequency of the out-of-phase aode of out-

of-plane motion is equal to that of in-phase mode of in-plane motion.

3. The lowest frequency of the system is associated with the in-phase

mode of out-of-plane motion and out-of-phase mode of in-plane motion and

is lower than the lowest frequency of uncoupled modes associated with the

constituent cylinders.

4. Fluid coupling effects depend on the gap-radius ratio. As the

gap decreases, fluid coupling effects increase.

5. The dynamic characteristics of two cylinders subjected to fluid

flows are different from those of a single cylinder.

An experimental study to verify the theory has been performed and will

be reported in the future. Primary results show that analytical results

and experimental data are in good agreement. Efforts also are being made

to improve the models for vibrations of reactor fuel bundles and heat

exchanger tube banks including fluid coupling effects.
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