Effect of subelement spacing in RRP Nb3Sn strands

PDF Version Also Available for Download.

Description

The Restacked Rod Process (RRP) is the Nb{sub 3}Sn strand technology presently producing the largest critical current densities at 4.2 K and 12 T. However, when subject to plastic deformation, RRP subelements (SE) were found to merge into each other, creating larger filaments with a somewhat continuous barrier. In this case, the strand sees a larger effective filament size, d{sub eff}, and its instability can dramatically increase locally leading to cable quench. To reduce and possibly eliminate this effect, Oxford Instruments Superconducting Technology (OST) developed for FNAL a modified RRP strand design with larger Cu spacing between SE's arranged in ... continued below

Physical Description

8 pages

Creation Information

Barzi, E.; Turrioni, D.; /Fermilab; Alsharo'a, M.; /MUONS Inc., Batavia; Field, M. et al. October 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Restacked Rod Process (RRP) is the Nb{sub 3}Sn strand technology presently producing the largest critical current densities at 4.2 K and 12 T. However, when subject to plastic deformation, RRP subelements (SE) were found to merge into each other, creating larger filaments with a somewhat continuous barrier. In this case, the strand sees a larger effective filament size, d{sub eff}, and its instability can dramatically increase locally leading to cable quench. To reduce and possibly eliminate this effect, Oxford Instruments Superconducting Technology (OST) developed for FNAL a modified RRP strand design with larger Cu spacing between SE's arranged in a 60/61 array. Strand samples of this design with sizes from 0.7 to 1 mm were first evaluated for transport current properties. A comparison study was then performed between the regular 54/61 and the modified 60/61 design using 0.7 mm round and deformed strands. Finite element modeling of the deformed strands was also performed with ANSYS.

Physical Description

8 pages

Source

  • Presented at 2007 Cryogenic Engineering Conference and International Cryogenic Materials Conference (CEC-ICMC), Chattanooga, Tennessee, 16-20 Jul 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-CONF-07-398-TD
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 919076
  • Archival Resource Key: ark:/67531/metadc878847

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 9, 2016, 7:56 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Barzi, E.; Turrioni, D.; /Fermilab; Alsharo'a, M.; /MUONS Inc., Batavia; Field, M. et al. Effect of subelement spacing in RRP Nb3Sn strands, article, October 1, 2007; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc878847/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.