MASTER

SEMI-ANNUAL STATUS REVIEW

NOVEMBER 1971

NOZZLE, EXTENSION, PRESSURE VESSEL

L. A. SHURLEY

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT UNLIMITED

AEROJET NUCLEAR SYSTEMS COMPANY
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
SEMI-ANNUAL STATUS REVIEW

NOVEMBER 1971

PRESSURE VESSEL AND CLOSURE

L. A. SHURLEY
PRESSURE VESSEL
SIGNIFICANT EVENTS
E/CDSR TO NOVEMBER 1971

- COMPLETED AND PUBLISHED PRESSURE VESSEL MID-CYLINDER THERMAL DESIGN STUDY REPORT
- COMPLETED STEADY-STATE EOL THERMAL ANALYSIS OF PV CYLINDER WITH FLOW PERTURBATORS
- COMPLETED STEADY-STATE EOL THERMAL ANALYSIS OF FORWARD CLOSURE JOINT WITH 7075-T73 CLOSURE
- COMPLETED STEADY-STATE EOL THERMAL ANALYSIS OF 7075-T73 CLOSURE
- COMPLETED 7075-T73 CLOSURE LAYOUT AND DETERMINED WEIGHT SAVINGS RESULTING FROM MATERIAL CHANGE
- UPDATED PVC DESIGN LAYOUT REFLECTING CLOSURE MATERIAL CHANGE
- COMPLETED REVIEW AND APPROVAL OF TWO ISSUES OF PVC C-002 SPECIFICATION
- UPDATED PVC FAILURE-MODE ANALYSIS
PRESSURE VESSEL
PLANNED ACTIVITY
NOVEMBER 1971 TO MAY 1972

- Update PVC design layout reflecting changes required from analyses and interface definition
- Conduct stress analysis of forward joint
- Conduct stress analysis of 7075-T73 closure
- Perform probabilistic reliability analysis of selected critical failure mechanisms
- Issue draft of PVC design report
- Continue coordination with WANL to resolve forward reactor interface definition
PRESSURE VESSEL

MID-CYLINDER DESIGN STUDY
STEADY-STATE EOL THERMAL ANALYSIS
- CYLINDER WITH FLOW PERTURBATORS
- FWD CLOSURE JOINT (7075-T73)
- 7075-T73 CLOSURE SHELL

STEADY-STATE EOL STRESS ANALYSIS
- FWD JOINT (7075-T73)
- 7075-T73 CLOSURE SHELL

PREPARE DRAFT OF PVC DESIGN REPORT

RELIABILITY
- UPDATE PVC FMA
- CALCULATE PRELIMINARY RELIABILITY OF SELECTED CRITICAL FAILURE MECHANISMS

7075-T73 LAYOUT AND WEIGHT SAVINGS
UPDATE PVC DESIGN LAYOUT
SUPPORT FOR C-002 SPEC. PREPARATION
PVC/NSS INTERFACE COORDINATION WITH WANL
PRESSURE VESSEL
SELECTED TECHNICAL TOPICS

- CLOSURE MATERIAL CHANGE 6061 TO 7075 AA
- FWD IMPEDANCE RING LOCATION AND BOLT COOLANT
- MID-CYLINDER OVERHEATING RESOLUTION
NON-WELDED INSTRUMENTATION PORT ADAPTER CONCEPT

INSTRUMENTATION PORT ADAPTER

CONOSEAL

BOLTED FLANGE

CLOSURE

AEROGNET NUCLEAR SYSTEMS COMPANY
PRESSURE VESSEL CYLINDER MID-WALL TEMPERATURE PROFILE
STEADY-STATE EOL CONDITIONS

MID-WALL TEMPERATURE, °F

DISTANCE FORWARD OF PV-NOZZLE FLANGE INTERFACE, INCHES

ENHANCEMENT FACTOR = 1.0
ENHANCEMENT FACTOR = 1.3
ENHANCEMENT FACTOR = 2.98
CLOSURE BOLT COOLANT CONCEPT
PRESSURE VESSEL RELIABILITY

<table>
<thead>
<tr>
<th>PVC FAILS TO CONTAIN PROPELLANT</th>
<th>MAY 71 VALUES</th>
<th>NOV 71 VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOCATED</td>
<td>ASSESSED</td>
<td>ALLOCATED</td>
</tr>
<tr>
<td>LEAKAGE AT NOZZLE TO PV JOINT</td>
<td>.96</td>
<td>TBD</td>
</tr>
<tr>
<td>LEAKAGE AT PV CLOSURE JOINT</td>
<td>.9686</td>
<td>TBD</td>
</tr>
<tr>
<td>PVC FAILS TO TRANSMIT ENGINE LOADS AND PROVIDE STRUCTURAL SUPPORT FOR INTERFACING COMPONENTS</td>
<td>.9664</td>
<td>.938</td>
</tr>
<tr>
<td>STRUCTURAL FAILURE OF PV WALL</td>
<td>.9588</td>
<td>TBD</td>
</tr>
<tr>
<td>FAILURE OF PV TO CLOSURE JOINT</td>
<td>.9664</td>
<td>.975**</td>
</tr>
<tr>
<td>SHEAR LIP FAILURE OF PV CLOSURE</td>
<td>.9664</td>
<td>.938</td>
</tr>
<tr>
<td>FAILURE OF PV CLOSURE BETWEEN BOLT HOLES</td>
<td>.974</td>
<td>>.910</td>
</tr>
</tbody>
</table>

* An enhancement factor on heat transfer coefficient of 1.60 is required to produce this value

** This value was based on temperatures that subsequent analysis proved inaccurate
PRESSURE VESSEL
SUMMARY AND CONCLUSIONS

TECHNICAL RESULTS

• WEIGHT SAVINGS OF 95 LBS RESULTED FROM CLOSURE MATERIAL CHANGE

• WITH A COOLING ENHANCEMENT FACTOR OF 1.6 THE CYLINDER TEMPERATURE AT MID-CORE IS 10°F, WHICH PROVIDES A M.S. OF +.11 AND A RELIABILITY OF .915.

• MAXIMUM CLOSURE FLANGE TEMPERATURE IS -142°F

• MAXIMUM CLOSURE BOLT (UNCOOLED) TEMPERATURE IS -99°F

PROJECT STATUS

• ALL WORK STATEMENTS ON SCHEDULE